88 resultados para AZO POLYMERS
Resumo:
The synthesis of a poly(azo)urethane by fixing CO2 in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed clean method and the polymers obtained are named NIPUs (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per met unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Organic-inorganic hybrid materials based on the assembly between inorganic 2D host structure and polymer have received considerable attention in the last few years. This emerging class of materials presents several applications according to their structural and functional properties. Particularly, among others, layered double hydroxides (LDHs) provide the opportunity of preparing new organically modified 2D nanocomposites. Pyrrole carboxylic acid derivatives, namely 4-(lH-pyrrol-1-yl)benzoate, 3-(pyrrol-i-yl)-propanoate,7-(pyrrol-1-yl)-heptanoate, and aniline carboxylic acid derivative, namely 3-aminobenzoic acid, have been intercalated in LDHs of intralamellar composition Zn2Al(OH)(6). The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by powder X-ray diffraction patterns (PXRD), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and electron spin resonance (ESR). The basal spacing found by the PXRD technique gives evidence of the formation of bilayers of the intercalated anions. ESR spectra present a typical signal with a superhyperfine structure with 6 + 1 lines (g = 2.005 +/- 0.0004), which is assigned to the interaction between a carboxylate radical from the guest molecules and a nearby aluminium nucleus (I = 5/2) from the host structure. Additionally, the ESR data suggest that the monomers are connected to each other in limited number after thermal treatment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R(C), which was varied from 0 to 80%. Deposition rates of 80 nm min (1) were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at similar to 47 at.% for R(C)>= 40%. The refractive index and optical gap, E(04), of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from similar to 40 degrees to similar to 77 degrees. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the study of optical, structural and biocompatible properties of PEO-like plasma polymerized films resulting from RF excited diethylene glycol dimethyl ether (CH3O(CH2CH2O)(2)CH3 diglyme) glow discharges. The study was carried out using visible-ultraviolet and FTIR spectroscopies and contact angle measurements. FTIR spectra of plasma polymerized diglyme showed a stronger presence of ethylene glycol groups in film structure for lower RF power levels. The contact angle measurements for water revealed an increasing from 30degrees to 62,5degrees when the RF power was varied from 2 to 45 W, indicating the decreasing of the hydrophilic character of diglyme films with the increasing of RF power. This trend is in agreement with FTIR results. The data from visible-ultraviolet reflectance and transmittance spectra revealed alterations on optical properties of plasma polymerized diglyme films. The film's optical gap varied from 3.8 to 3 eV for RF power running from 5 to 45 W.
Resumo:
Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Plasma treatments are frequently employed to modify surface properties of materials such as adhesivity, hydrophobicity, oleophobicity etc. Present work deals with surface modification of common commercial polymers such as polyethylene terephthalate (PET) and polyurethane (PU) by an air dielectric barrier discharge (DBD) at atmospheric pressure. The DBD treatment was performed in a plain reactor in wire-duct geometry (non-uniform field reactor), which was driven by a 60 Hz power supply. Material characterization was carried out by water contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The plasma-induced modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. The AFM analysis reveals that the plasma treatment roughens the material surface. Due to these structural and morphological changes the surface of DBD-treated polymers becomes more hydrophilic resulting in enhanced adhesion properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Recently a textile azo dye processing plant effluent was identified as one of the sources of mutagenic activity detected in the Cristais River, a drinking water source in Brazil [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597]. Besides presenting high mutagenic activity in the Salmonella/microsome assay, the mutagenic nitro-aminoazobenzenes dyes CI Disperse Blue 373, Cl Disperse Violet 93, and CI Disperse Orange 37 [G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, the contribution of azo dyes in the mutagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64] as well as benzidine, a known carcinogenic compound [T.M. Mazzo, A.A. Saczk, G.A. Umbuzeiro, M.V.B. Zanoni, Analysis of aromatic amines in surface waters receiving wastewater from textile industry by liquid chromatographic with eletrochemical detection, Anal. Lett., in press] were found in this effluent. After similar to 6 km from the discharge of this effluent, a drinking water treatment plant treats and distributes the water to a population of approximate 60,000. As shown previously, the mutagens in the DWTP intake water are not completely removed by the treatment. The water used for human consumption presented mutagenic activity related to nitro-aromatics and aromatic amines compounds probably derived from the cited textile processing plant effluent discharge [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z.. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597; G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, the contribution of azo dyes in the multagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64]. Therefore, it is important to evaluate the possible risks involved in the human consumption of this contaminated water. With that objective, one sample of the cited industrial effluent was tested for carcinogenicity in the aberrant crypt foci medium-term assay in colon of Wistar rats. The rats received the effluent in natura through drinking water at concentrations of 0.1%, 1%, and 10%. The effluent mutagenicity was also confirmed in the Salmonella/microsome assay with the strains TA98 and YG1041. There was an increased number of preneoplastic lesions in the colon of rats exposed to concentrations of 1% and 10% of the effluent, and a positive response for both Salmonella strains tested. These results indicate that the discharge of the effluent should be avoided in waters used for human consumption and show the sensitivity of the ACF crypt foci assay as an important tool to evaluate the carcinogenic potential of environmental complex mixtures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cylinders (3.5 x 5.0 mm) of the reline resins Kooliner (K), New Truliner (N), Tokuso Rebase Fast (T), and Ufi Gel Hard (U) were bonded to cylinders (20 x 20 mm) of the denture base resin Lucitone 550 (L), and samples were divided into two controls and four test groups (n = 8). Shear tests (0.5 mm/min) were performed after polymerization or immersion in water (37 degrees C) for 7 days (controls); two or seven cycles of disinfection by immersion in sodium perborate (50 degrees C/10 min) or microwave irradiation (650 W/6 min). Statistical analyses (alpha = 0.05) revealed that two cycles of microwave and chemical disinfection increased the mean bond strengths of materials T (9.08 to 12.93 MPa) and L (18.89 to 23.02 MPa). For resin L, seven cycles of chemical (15.72 MPa) and microwave (17.82 MPa) disinfection decreased the shear bond strength compared with the respective control (21.74 MPa). Resins U (13.12 MPa), K (8.44 MPa), and N (7.98 MPa) remained unaffected.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.