96 resultados para ALCOHOL FUEL CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, carbon-supported Pt70Co30 nanoparticles were prepared by a polyol process using a long-chain diol as reducer (hexadecanediol) and oleic acid and oleylamine as stabilizers. Depending on the synthesis conditions, Pt70Co30/C nanocatalysts with very small particle size (1.9 +/- 0.2 nm) and narrow distribution homogeneously dispersed on the carbon support and having a high degree of alloying without the need of thermal treatments were obtained. The as-prepared catalyst presents an excellent performance as proton exchange membrane fuel cells (PEMFC) cathode material. In terms of mass activity (MA), the Pt70Co30/C electrocatalysts produced single fuel cell polarization response superior to that of commercial catalyst. To analyze alloying effects, the result of thermal treatment at low temperatures (200-400 degrees C) was also evaluated and an increase of average crystallite size and a lower degree of alloying, probably associated to cobalt oxidation, were evidenced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). The whole project consisted of the preparation of the component materials: anode, cathode and electrolyte, and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Several anode-supported single SOFCs of the type (ZrO(2):Y(2)O(3)+NiO) thick anode/(ZrO(2):Y(2)O(3)) thin electrolyte/(La(0.65)Sr(0.35)MnO(3)+ZrO(2):Y(2)O(3)) thin cathode have been prepared and tested at 700 and 800 degrees C after in situ H(2) anode reduction. The main results show that the slurry-coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A capillary zone electrophoresis method using indirect UV detection for the analysis of chloride and sulfate in alcohol fuel samples was developed. The anions were analyzed in less than 3 min using an electrolyte containing 10 mmol 1(-1) chromate and 0.75 mmol 1(-1) hexamethonium bromide (HMB) as electroosmotic flow modifier. Coefficients of variation were better than 0.6% for migration time (n = 10) and between 2.05 and 2.82% for peak area repeatabilities. Analytical curves of peak area versus concentration in the range of 0.065-0.65 mg kg(-1) for chloride and 0.25-4.0 mg kg(-1) for sulfate were linear with coefficients of correlation higher than 0.9996. The limits of detection for sulfate and chloride were 0.033 and 0.041 mg kg(-1), respectively. Recovery values ranged from 85 to 103%. The method was successfully applied for the quantification of sulfate and chloride in five alcohol fuel samples. The concentration of sulfate varied from 0.45 to 3.12 mg kg(-1). Chloride concentrations were below the method's LOD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH 2, PtO 2, SnO 2 and IrO 2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded. © 2012 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this paper is to describe the benefits of sugar cane ethanol in Brazil, appointing the productivity of this type of fuel based on hectares of plantation, its carbon dioxide cycle and the contribution to reduce the greenhouse effect. In the following step the uses of ethanol for hydrogen production by steam reforming is analyzed and some comparison with natural gas steam reforming is performed. The sugar cane industry in Brazil, in a near future, in the hydrogen era, could be modified according to our purpose, since besides the production of sugar, and ethylic and anhydric alcohol, Brazilian sugar cane industry will also be able to produce biohydrogen.Fuel cells appear like a promising technology for energy generation. Among several technologies in the present, the PEMFC (proton exchange membrane fuel cell) is the most appropriate for vehicles application, because it combines durability, high power density, high efficiency, good response and it works at relatively low temperatures. Besides that it is easy to turn it on and off and it is able to support present vibration in vehicles. A PEMFC's problem is the need of noble catalysts like platinum. Another problem is that CO needs to be in low concentration, requiring a more clean hydrogen to avoid fuel cell deterioration.One part of this paper was developed in Stockholm, where there are some buses within the CUTE (clean urban transport for Europe) project that has been in operation with FC since January 2004. Another part was developed in Guaratingueta, Brazil. Brazil intends to start up a program of FC buses. As conclusion, this paper shows the economical analysis comparing buses moved by fuel cells using hydrogen by different kinds of production. Electrolyze with wind turbine, natural gas steam reforming and ethanol steam reforming. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A nickel modified boron doped diamond (Ni-BDD) electrode and nickel foil electrode were used in the determination of methanol in alkaline solutions. The Ni-BDD electrode was electrodeposited from a 1 mM Ni(NO(3))(2) solution (pH 5), followed by repeat cycling in KOH. Subsequent analysis utilised the Ni(OH)(2)/NiOOH redox couple to electrocatalyse the oxidation of methanol. Methanol was determined to limits of 0.3 mM with a sensitivity of 110 nA/mM at the Ni-BDD electrode. The foil electrode was less sensitive achieving a limit of 1.6 mM and sensitivity of 27 nA/mM. SEM analysis of the electrodes found the Ni-BDD to be modified by a quasi-random microparticle array.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An expressive amount of produced hydrogen is generated by customers in-situ such as petrochemical, fertilizer and sugarcane industries. However, the most utilized feedstock is natural gas, a non-renewable and fossil fuel. The introduction of biohydrogen production process associated in a sugarcane industry is an alternative to diminish emissions and contribute to create a CO2 cycle, where the plants capture this gas by photosynthesis process and produces sucrose for ethanol production. The cost of production of ethanol has dramatically decreased (from about US$ 700/m3 in 1970s to US$ 200/m3 today), becoming this a good option at near term, inclusively for its utilization by customers localized in main regions (localized especially in regions such as Southeastern Brazil) Also in near future, it will possible the utilization of fuel cells as form of distributed generation. Its utilization could occur specially in peak hours, diminishing the cost of investments in newer transmission systems. A technical and economic analysis of steam reformer of ethanol to hydrogen production associated with sugarcane industry was recently performed. This technique will also allow the use of ethanol when its price is relatively low. This study was based on a previous R&D study (sponsored by CEMIG - State of Minas Gerais Electricity Company) where thermodynamic and economic analyses were developed, based in the development of two ethanol steam reformers prototypes.x In this study an analysis was performed considering the use of bagasse as source of heat in the steam reforming process. Its use could to diminish the costs of hydrogen production, especially at large scale, obtaining cost-competitive production and permitting that sugarcane industry produces hydrogen in large scale beyond ethylic alcohol, anhydrous alcohol (or ethanol) and sugar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)