64 resultados para AISI H13 steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shot peening is a surface process widely used to improve the fatigue strength of materials, through compressive residual stresses induced in their surface layers. Considering mechanical components for high responsible applications, wear and corrosion control is currently accomplished by the use of coated materials.In the case of chrome plating or hard anodizing, lower fatigue strength in comparison to uncoated parts are associated to high residual tensile stresses and microcracks density. Under constant or variable amplitude loading microcracks will propagate and cross the interface coating substrate without impediment.The aim of the present study is to analyze the influence of WC-10Ni coating applied by HVOF process on the axial fatigue strength of AISI 4340 steel. The shot peening effect on the fatigue performance of coated AISI 4340 steel was also evaluated. The fractured fatigue specimens were investigated using a scanning electron microscope in order to obtain information about the crack initiation points. (C) 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue failure is a result of a crack initiation and propagation, in consequence of a cyclical load. In aeronautical components as landing gear the fatigue strength is an important parameter to be considered in project, as well as the corrosion and wear resistance.The thermal sprayed HVOF technology it's normally used to protect components against wear and corrosion, and are being considerate an alternative to replace chromium by the aeronautical industry. With respect to fatigue life, the HVOF technique induces residual stress on the interface. In the case of tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. The technique to improve the coated materials fatigue strength is the shot peening process, which induces residual stress in the surface in order to delay the nucleation and propagation process.The aim of present study is to compare the influence of WC-10 Ni coating applied by HVOF on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue tests for material base, and tungsten carbide coated specimens. (C) 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, high-strength materials, particularly AISI 4340 steel, are used in several landing gear components. Due to the high resistance to wear and corrosion required, the components are usually coating by hard chromium. This treatment produces waste, such as Cr+ 6 (hexavalent chromium), generally after applying the coating of hard chromium which is harmful to health and the environment. The process HVOF (High-velocity-oxygen-fuel) is considered a promising technique for deposition of hard chromium alternative coatings, for example, coatings based on tungsten carbide. This technique provides high hardness and good wear strength and more resistance to fatigue when compared to AISI 4340 hard chromium coated. To minimize loss fatigue due to the process of deposition, shot peening is used to obtain a compressive residual stress. The aim of this study was to analyze the effects of the tungsten carbide thermal spray coating applied by the HVOF, in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behavior in fatigue. Optical microscopy and scanning electron microscopy were used to observe crack origin sites, thickness and adhesion of the coating. (C) 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shot peening is a method widely used to improve the fatigue strength of materials. through the creation of a compressive residual stress field (CRSF) in their surface layers. In the present research the gain in fatigue life of AISI 4340 steel, Used in landing gear. is evaluated under four Shot peening conditions. Rotating bending fatigue tests were conducted and the CRSF was measured by an X-ray tensometry prior and during fatigue tests. It was observed that relaxation of the CRSF occurred due to the fatigue process. In addition, the fractured fatigue specimens were investigated using a scanning electron microscope in order to obtain information about the crack initiation points. The evaluation of fatigue life, relaxation of CRSF and crack sources are discussed. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper will present a failure analysis of a chain component, manufactured with AISI 1045 steel and used for sugarcane transport. During the fabrication process, this component is submitted to induction hardening, just on one surface, before the galvanizing process. The occurrence of surface cracks, during storage, disables the usage of these components. Chemical and metallographic analyses, tensile, fracture toughness, and hardness tests, and fractography were conducted in order to determine the causes of failure. The steel chemical composition was in accordance with AISI 1045. The metallographic analyses and fractography did not exhibit the presence of zinc into the cracks; this is an indication that the cracks occurred after the galvanizing process. Tensile and fracture toughness test results are as expected. The crack surface and the fracture toughness specimen surfaces showed two different fracture micromechanisms: dimples and intergranular. The delayed fracture associated with the predominance of intergranular fracture micromechanism at the induction hardened layer and the high hardness level is a clear indication of the hydrogen embrittlement. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion implantation of nitrogen into samples of tempered and quenched H13 steel was carried out by plasma immersion technique. A glow discharge plasma of nitrogen species was the ion source and the negative high voltage pulser provided 10-12 kV, 60 mu s duration and 1.0-2.0 kHz frequency, flat voltage pulses. The temperatures of the samples remained between 300 and 450 degrees C, sustained solely by the ion bombardment. In some of the discharges, we used a N-2 + H-2 gas mixture with 1:1 ratio. PIII treatments as long as 3, 6, 9 and up to 12 h were carried out to achieve as thickest treated layer as possible, and we were able to reach over 20 mu m treated layers, as a result of ion implantation and thermal (and possibly radiation enhanced) diffusion. The nitrogen depth profiles were obtained by GDOS (Glow Discharge Optical Spectroscopy) and the exact composition profiles by AES (Auger Electron Spectroscopy). The hardness of the treated surface was increased by more than 250%, reaching 18.8 GPa. No white layer was seen in this case. A hardness profile was obtained which corroborated a deep hardened layer, confirming the high efficacy of the moderate temperature PIII treatment of steels. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that chromium electrodeposition results in protection against wear and corrosion, combined with chemical resistance and good lubricity, the reduction in fatigue strength of base metal and environmental requirements causes one to search for possible alternatives. To improve the fatigue and corrosion resistance of AISI 4340 steel, an experimental study has been made for an intermediate electroless nickel layer deposited on base metal. The objective of this study was to analyze the effect of nickel underplate on the fatigue and corrosion strength of hard-chromium-plated AISI 4340 steel. Deposition of the conventional wear-resistant hard chromium plating leads to a decrease in mechanical properties of the base metal, especially the fatigue strength. Rotating bending fatigue tests results indicate better performance for conventional hard chromium plating. Good corrosion resistance in salt fog exposure was obtained for the accelerated hard chromium plating. Experimental data showed higher fatigue and corrosion resistance for samples prepared with accelerated hard chromium plate over electroless nickel plate, when compared with samples without electroless nickel underplate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shellac is a natural resin used for the preservation of fruits, bones and as a coating on drugs. The hydroxyapatite (HA), which is naturally found in human bones, is used as filler to substitute amputated bone or as a coating for prosthetics, promoting bone growth in implants of prostheses. The objective of this work is to immobilize HA from an alcoholic solution of shellac on plates of titanium, niobium and AISI 316L steel using the simple dip-coating method. The corrosion resistance of the uncoated films is compared with ones coated with shellac and shellac plus HA. The deterioration of the film composed of shellac with hydroxyapatite in saline solution follows the ascending order: AISI 316L steel, titanium, niobium. The elemental analysis of the shellac showed that it mainly consists of the elements C, H, N and O. We used the FT-IR spectrum to characterize the shellac and HA. ©The Electrochemical Society.