309 resultados para Óleo lubrificante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lubricant oil used in engines of internal combustion must be, periodically, changed. Its mainly function in the engines is to reduce the friction between the pieces, but its presence also promotes the cleanness and the refrigeration of the equipment. These attributions, at the end of some cycles of operation, make the oil to be dirty, that is, full of contaminating substances such as water, gasoline, diesel, additives, oxidized hydro-carbons and rests of metals, not being recommended, therefore, its discarding in the environment. Thus, all the used lubricant oil that leaves the automobiles engine has been thrust, waiting for a solution. The pollution generated by the discarding of a ton of used oil per day in the soil or in the rivers is equivalent to a domestic sewer of 40 thousand of people. The indiscriminate burning of the used lubricant oil generates significant emissions of metallic oxides, besides other toxic gases, like the dioxin and sulphur oxides. In this context, the mean objective of this essay was to effectuate the rerrefine of the used lubricant oil, aiming the increase of its life cycle and consequently contributing for the reduction of the environmental pollution. According to the used process, it was possible to get a rerrefine oil, of good quality, which physicistchemistries properties are in compliance with the norms of NBR and ASTM

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum and its subproducts are considered a treat for the environmental quality because of the many environmental accidents that may occur during exploitation, transport and storage. A common remediation technique used in the contaminated areas is based on the use of surfactants, mainly the chemical ones, because they have low production costs. In the other hand, some microorganisms have indicate capacities of producing surfactants that emulsify substances and as result, offer a bigger contact surface for the microbiota degradation. This biossurfactants stand out in comparison with the chemical surfactants because they present lower micelar concentration values, are more tolerant for temperature and pH variation, because they are biodegradable, have low toxicity, higher emulsification and hydrocarbon solubilization index. In this way, after the surfactant application, a toxicity evaluation have to be made to identify the treatment effects. In soil, the activity of some microbial enzymes can show the environmental behavior of the contaminant under different treatment conditions. Dehydrogenase is one example of those enzymes that can demonstrate indirectly the effect of the pollutant on the soil microorganisms. The aim of this paper was to evaluate the toxicity after the addition of a surfactant and/or Pseudomonas aeruginosa LBI in soil contaminated by a mineral automotive lubricant. The previous mentioned bacteria are a potential biossurfactant (rhamnolipid) producer. In order to evaluate the toxicity, the dehydrogenase test was run. In this test, trifeniltetrazolium compound (TTC) after utilized as an electron acceptor, turns into trifenil formazan (TPF), that can be indirectly quantified using the absorbance measured by the spectrophotometer UV-visible. In this way, it was possible to quantify the dehydrogenase activity from the contaminated soil samples... (Complete abstract click electronic access below)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of methods and products have been developed in order to eliminate or reduce the negative effects that hydrocarbons cause to the environment, including hydrophobic expanded vermiculite, used in oil residue filtering systems at gas stations. However, upon adsorbing organic compounds, the vermiculite is no longer used and is sent to landfills. The aim of the present study was to wash granular and powdered vermiculite containing oil lubricant in its pores with distilled water and solutions of 0.1% SDS surfactant and rhamnolipids, with the aim of removing the lubricant and the possibility of reusing the mineral. The greatest amount of lubricant removal was obtained through washing with 0.1% SDS and both granulometric forms. This may be associated to the industrial purification received by the surfactant. However, the biosurfactant is ecologically more viable due to its low toxicity and ease of degradability. In the readsorption tests, greatest adsorption was obtained with the granular vermiculite washed in SDS solution. In order to enable the reuse of the mineral, further tests are needed to enhance desorption/adsorption efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avaliação da Biodegradação de Diferentes Tipos de Óleo Lubrificante em Meio Aquoso pela Norma Técnica L6.350 (CETESB, 1990), utiliza-se o processo respirométrico de Bartha e Pramer para acompanhar a biodegradação de diferentes tipos de óleo lubrificante automotivo adaptado ao meio aquoso. Para realização do experimento foram preparados um inóculo base e, posteriormente, um inóculo aquoso. Quatro tratamentos foram realizados em dois experimentos consecutivos: T1 (controle); T2 (óleo semi-sintético); T3 (óleo mineral); T4 (óleo usado). Dentre os resultados, obteve-se a seguinte ordem decrescente na produção de CO2 nos respirômetros: T4 > T2 > T3 > T1. Assim, o óleo lubrificante usado surgiu com maior biodegradabilidade, seguido do semisintético e do óleo mineral. Observou-se também que o lubrificante mineral apresentou maior período de adaptação comparado ao semisintético.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA