2 resultados para zeros of Hermite polynomials
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
We present indefinite integration algorithms for rational functions over subfields of the complex numbers, through an algebraic approach. We study the local algorithm of Bernoulli and rational algorithms for the class of functions in concern, namely, the algorithms of Hermite; Horowitz-Ostrogradsky; Rothstein-Trager and Lazard-Rioboo-Trager. We also study the algorithm of Rioboo for conversion of logarithms involving complex extensions into real arctangent functions, when these logarithms arise from the integration of rational functions with real coefficients. We conclude presenting pseudocodes and codes for implementation in the software Maxima concerning the algorithms studied in this work, as well as to algorithms for polynomial gcd computation; partial fraction decomposition; squarefree factorization; subresultant computation, among other side algorithms for the work. We also present the algorithm of Zeilberger-Almkvist for integration of hyperexpontential functions, as well as its pseudocode and code for Maxima. As an alternative for the algorithms of Rothstein-Trager and Lazard-Rioboo-Trager, we yet present a code for Benoulli’s algorithm for square-free denominators; and another for Czichowski’s algorithm, although this one is not studied in detail in the present work, due to the theoretical basis necessary to understand it, which is beyond this work’s scope. Several examples are provided in order to illustrate the working of the integration algorithms in this text
Resumo:
This research work aims to make a study of the algebraic theory of matrix monic polynomials, as well as the definitions, concepts and properties with respect to block eigenvalues, block eigenvectors and solvents of P(X). We investigte the main relations between the matrix polynomial and the Companion and Vandermonde matrices. We study the construction of matrix polynomials with certain solvents and the extention of the Power Method, to calculate block eigenvalues and solvents of P(X). Through the relationship between the dominant block eigenvalue of the Companion matrix and the dominant solvent of P(X) it is possible to obtain the convergence of the algorithm for the dominant solvent of the matrix polynomial. We illustrate with numerical examples for diferent cases of convergence.