2 resultados para water deficit

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water scarcity is a reality for the inhabitants of the Brazilian semiarid region. The problem, in quantitative terms , is caused due to local climatic conditions due mostly to a water deficit. Qualitatively, results of multiple uses and resulting contamination by human activities. Eutrophication is presented as a threat to the sustainable use of water resources, in order to favor the predominance of dense populations of cyanobacteria, which can be potentially harmful to human health. The aim of this study is to understand the population dynamics of phytoplankton and cyanobacteria to assess water quality of reservoirs Santa Cruz do Apodi and Pau dos Ferros belonging to bacia Apodi Mossoró-RN . Water samples were collected monthly between October 2011 and May 2012 in reservoirs Santa Cruz do Apodi and Pau dos Ferros, in this latter , in Jan/12 we performed a diel profile . The abiotic variables obtained in the field and in the laboratory were: water temperature , dissolved oxygen , pH , turbidity , transparency , total nitrogen and total phosphorus . Phytoplankton samples were collected with a plankton net and bottle of Van dorn . Were performed : identification , quantification , calculation of biovolume , classification into functional groups and index calculation phytoplankton assembly ( Q ) , cyanotoxins were quantified by ELISA . Statistical analyzes supported the evaluation of the dynamics between biotic and abiotic factors. A questionnaire was conducted to examine the conceptions of the population, education professionals and students. The reservoir of Pau dos Ferros, shallow , turbid and eutrophic showed dominance of the functional group SN throughout the sample period . The phytoplankton biomass ranged from 20 to 70 mm ³ . L - 1, the lowest values coincided with the increase of the mixing zone and transparency, which contributed to the occurrence of a change in species composition phytoplankton . The application of the index Q proved relevant, the reservoir of Pau dos Ferros , depending on the species present , was classified ecologically as bad for almost the entire sample period . The reservoir Santa Cruz do Apodi showed low biomass ( 0.04 and 4.31 mm ³ . L - 1 ) and greater diversity in the phytoplankton composition . According to the index assembly (Q ), it showed moderate condition during most of the period influenced by different functional groups of typical meso- eutrophic environment (K S0, H1, C, F , J , E, D and N) . Associations of diatoms and green algae D and X1 succeeded populations of cyanobacteria in periods marked by greater instability in the system , caused by wind or rain. In summary , the occurrence of drought has a direct influence on the hydrological conditions of the reservoirs , in general, these events, reducing the reservoir level is directly related to decreased water quality and increased density of phytoplankton occurring predominance of cyanobacteria , the index Q reflected well to changes in phytoplankton composition , being a good indicator for biomonitoring of reservoirs in this study and survey of previous conceptions showed the need to work on environmental awareness for the preservation of water resources by conducting workshops for Environmental Education