12 resultados para volatilização de NH3
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The oil and petrochemical industry is responsable to generate a large amount of waste and wastewater. Among some efluents, is possible find the benzene, toluene, ethilbenze and isomers of xilenes compounds, known as BTEX. These compounds are very volatily, toxic for environment and potencially cancerigenous in man. Oxidative advanced processes, OAP, are unconventional waste treatment, wich may be apply on treatment and remotion this compounds. Fenton is a type of OAPs, wich uses the Fenton s reactant, hydrogen peroxide and ferrous salt, to promove the organic degradation. While the Photo-Fenton type uses the Fenton s reactant plus UV radiation (ultraviolet). These two types of OAP, according to literature, may be apply on BTEX complex system. This project consists on the consideration of the utilization of technologies Fenton and Photo-Fenton in aqueous solution in concentration of 100 ppm of BTEX, each, on simulation of condition near of petrochemical effluents. Different reactors were used for each type of OAP. For the analyticals results of amount of remotion were used the SPME technique (solid phase microextraction) for extraction in gaseous phase of these analytes and the gas chromatography/mass espectrometry The arrangement mechanical of Photo-Fenton system has been shown big loss by volatilization of these compounds. The Fenton system has been shown capable of degradate benzene and toluene compounds, with massic percentage of remotion near the 99%.
Resumo:
Although the good performance in organic matter and suspended solids removal, the anaerobic reactors are unable to remove ammonia nitrogen from sewage, which makes indispensable to include a step of post-treatment for removal of ammonia or nitrate as necessary. This paper presents the performance of a new variant technology, where the nitrification unit, preceded by anaerobic units, is a submerged aerated biological filter, without continuous sludge discharge in their daily operation. The oxygenation system is very simple and inexpensive, consisting of perforated hoses and compressors. The anaerobic reactors are a septic tank with two chambers followed (8.82 m³) and two parallel anaerobic filters (36 m³ each) filled with ceramic bricks and conics plastic parts. Both followed aerated filters were filled with cut corrugated conduit. The study evaluated the behavior of the system with constant domestic sewage flow (10 m³/d) and different aeration conditions, are these: stage 01, when applied air flow of 0.01 m³ air/min in both aerated filter; stage 02, remained in the initial air flow rate in the second aerated filter and increased at the first to 0.05 m³ air/min; at last, at last, in stage 03, the air flow rate of first aerated filter was 0.10 m³ air/min and on the second remained at 0.01 m³ air/min. The filter FA1 received load of 0.41 kg COD/m³.d, 0.37 kg COD/m³.d and 0.26 kg COD/m³.d on phases 01, 02 and 03, respectively. The FA2 received loads of 0.25 kg COD/m³.d, 0.18 kg COD/m³.d and 0.14 kg COD/m³.d on phases 01, 02 and 03, respectively. During stage 01, were found the following results: 98% removals of BODtotal and 92% of CODtotal, with effluent presenting 9 mg/L of BODtotal final average and 53 mg/L of CODtotal average; suspended solids removals of 93%, with a mean concentration of 10 mg/L in the final effluent; 47% reduction of ammonia of FA2 to FAN 's, presenting average of 28 mg NNH3/ L of ammonia in the effluent with; the dissolved oxygen levels always remained around 2.0 mg/L. During stage 02, were found removals of 97% and 95% to BODtotal and suspended solids, respectively, with average final concentrations of 8 and 7 mg/L, respectively; was removed 60% of ammonia, whose final concentration was 16.3 mg NNH3/ L, and nitrate was increased to a final average concentration of 16.55 mg N-NO3/L. Finally, the stage 03 provided 6 mg/L of DBOtotal (98% removal) and 23 mg/L of CODtotal (95% removal) of final effluent concentrations average. At this stage was identified the higher ammonia oxidation (86%), with final effluent showing average concentration of 6.1 mg N-NH3/L, reaching a minimum of 1.70 mg N-NH3/L. In some moments, during stage 03, there was a moderate denitrification process in the last aerated filter. The average turbidity in the effluent showed around 1.5 NTU, proving the good biomass physical stability. Therefore, the results demonstrate the submerged biological filters potential, filled with high void ratio material (98%), and aerated with hoses and compressor adoption, in the carbonaceous and nitrogenous matter oxidation, also generating an effluent with low concentration of solids
Resumo:
The improper disposal of nitrogen in receiving water courses causes problems such as toxicity to living beings through the consumption of oxygen to meet the nitrogen demand, eutrophication and nitrate contamination of aquifers. For this reason it is often necessary to be carried out complementary treatment of wastewater to eliminate or reduce the concentration of this compound in the wastewater. The objective of this study is to evaluate the biological removal of nitrogen compounds using submerged aerated and anoxic filters as post-treatment of an anaerobic system, with low cost and innovative technology, which in previous studies has shown high removal efficiency of organic matter and great potential biological nitrogen compounds removal. The simple design with perforated hoses for air distribution and filling with plastic parts proved to be very efficient in relation to organic matter removal and nitrification. The system presented, in the best stage, efficiency in converting ammonia to nitrate by 71%, and produced a final effluent concentration below 10 mg / L of NH3-N. In addition, carbon concentration was removed by 77%, producing final effluent with 24 mg/L COD. However, denitrification in anoxic filter was not effective even with the addition of an external carbon source. There was a reduction of up to 56% of nitrogen caused by the process of simultaneous nitrification and denitrification (SND). The high voids space presented by this type of support material coupled with direct aeration of the sludge, allows the respiration of biomass retained between the endogenous phase, increased cell retention time and sludge retention capacity, producing a final effluent with turbidity less than 5 UT and total suspended solids around 5.0 mg/L
Resumo:
In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel
Resumo:
It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides
Resumo:
The trioxsalen (Tri) is a low-dose drug used in the treatment of psoriasis and other skin diseases. The aim of the study was applying the thermal analysis and complementary techniques for characterization, evaluation of the trioxsalen stability and components of manipulated pharmaceutical formulations. The thermal behavior of the Tri by TG/DTG-DTA in dynamic atmosphere of synthetic air and nitrogen showed the same profile with a melting peak followed by a volatilization-related event. From the curves TG / DTG is observed a single stage of mass loss. By heating the drug in the stove at temperatures of 80, 240 and 260 °C, it had no change in chemical structure through the techniques of XRD, HPLC, MIR, OM and SEM. From the non-isothermal and isothermal TG kinetic studies was possible to calculate the activation energy and reaction order for the Tri. The drug showed good thermal stability. Studies on drug-excipient compatibility showed interaction of trissoralen with sodium lauryl sulfate 1:1. There was no interaction with aerosol, pregelatinized starch, sodium starch glycolate, cellulose, croscarmellose sodium, magnesium stearate, lactose and mannitol.The characterization of three trioxsalen formulations at concentrations of 2.5, 5, 7.5, 10, 12.5 and 15 mg was performed by DSC, TG / DTG, XRD, NIR and MIR. The PCA classification method based on spectral data from the NIR and MIR of trissoralen formulations allows successful differentiation into three groups. The formulation 3 was the one that best showed analytical profile with the following composition of aerosil excipients, pre-gelatinized starch and cellulose. The activation energy of the volatilization process of the drug was determined in binary mixtures and formulation 3 through fitting and isoconversional methods. The binary mixture with sodium starch glycolate and lactose showed differences in kinetic parameters compared to the drug isolated. The thermoanalytical techniques (DSC and TG / DTG) were shown to be promising methodologies for quantifying trioxsalen obtained by the linearity, selectivity, no use solvents, without sample preparation, speed and practicality.
Resumo:
Reservoirs are the main sources of surface water in Brazil´s semiarid region. The majority of these water supplies, however, are compromised by eutrophication. A severe drought in 2012 contributed to significant losses in water volume, influencing the availability of resources (nutrients and light) for phytoplankton. The aim of this study is to understand the dynamics of the functional groups of phytoplankton and the factors that affect them during a severe drought in the semiarid reservoirs of the northeast. We therefore studied the Dourado, Gargalheiras and Passagem das Traíras reservoirs in Rio Grande do Norte from January 2012 to January 2013. The effect of drought favoured homogeneity within the reservoir, in relation to biotic and abiotic variables, notably the absence of water supply given the lack of flow from its tributaries (intermittent river). The phytoplankton functional groups of bloomforming cyanobacteria (SN, S1 and M) dominated throughout the year 2012, in both the shallow and deep areas of the three reservoirs studied. The groups were related to high concentrations of volatile solids, total phosphorus and ammonia, and high turbidity. Cylindrospermopsis raciborskii (SN group) was the species with the greatest biomass in the three reservoirs. M group (Sphaerocavum brasiliense) performed better in shallow waters with more available phosphorus. Our data showed that high concentrations of nutrients and low availability of light, besides the stability of the water column due to lack of flow and the system´s high residence time, favoured the dominance of bloom-forming cyanobacteria groups, especially those tolerant to shadow
Resumo:
One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.