27 resultados para vertically stacked photovoltaic thermal solar cell
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The conversion of solar energy in electric with photo-voltaic cells has been carried through exclusively with devices of semiconducting junction. To put this situation comes moving for better in them last years, thanks to a new technology of production of known solar cells as Dye Solar Cell. This proposal aims at to develop a DSC having as dye lavonoides of the Capsicum frutescens (malagueta pepper). Front is considered to evaluate the photo-voltaic parameters varies it regions of the visible specter, as well as a good efficiency of conversion
Resumo:
It presents a direct exposure to solar dryer for drying of food, built from a scrap of luminaire. The dryer works under direct exposure to natural circulation. Will be presented their methods of construction and assembly of that dryer that allows the reuse of materials, constituting a environmentally correct recycling dryer main features proposed are its low cost and simple manufacturing processes and assembly. Test results will be presented for the drying of foods that prove the feasibility and cost of thermal solar drying alternative system proposed. It is worth emphasizing the social importance that such application is for the most excluded since the value-added fruits, vegetables, legumes and other foods in relation to fresh may represent an option of income generation. It will also study the transformation of some of dry food meal and demonstrated that the drying times for the foods tested are competitive and sometimes pointed in the solar literature
Resumo:
O presente trabalho tem como objetivo investigar as características de filmes de SnO2 depositados em substrato de vidro borosilicato por um processo de silk-screen modificado para obtenção de espessura fina compatível com a aplicação em células solares policristalinas de baixo custo. O filme de SnO2 é um dos mais apropriados para obtenção de vidro TCO (transparent conductive oxide) para uso em células solares devido a sua baixa resistividade elétrica e alta transmitância, sendo quimicamente inerte, mecanicamente duro e tem resistência a altas temperaturas, o que facilita então a calcinação das amostras entre 500º C a 550º C. Os filmes foram obtidos a partir de uma solução precursora básica, preparada pela dissolução de SnCl2.2H2O em Etanol (99,5 %). Foi realizado um planejamento fatorial 2(3-1) para analisar a influência dos parâmetros concentração da solução precursora (CETN), temperatura de calcinação (TC) e taxa de aquecimento (tX) na calcinação, sendo a concentração CETN o parâmetro que apresentou maior efeito sobre os parâmetros de respostas investigados: espessura do filme (ω), resistividade de superfície (ρ) e a transmitância relativa (θ). Foi possível obter com a metodologia utilizada, filmes com espessuras da ordem de 1 Nm com resistividade de superfície de 10 / e transmitância relativa entre 70 e 80 %.
Resumo:
The present work concerns the use of shade elements as architectural elements to block sunlight in public buildings. In a city like Natal, (5o South) the incidence of sunrays in any type of design should be a constant concern for all the architects. Besides, this habit of avoiding insolation in the environment is not a common practice. Within this context, the present work has the objective to dig deep into the knowledge of solar control, studying some cases and verifying its function according to the orientation and the original design of the building, having in mind if the shade elements usually used in the region have achieved their purpose of providing protection against the incidence of direct sun rays. This study considers the position of the shade element (horizontal and vertical), the angle formed between them and the respective facades, and the local of the buildings in relation to their orientation during the summer, winter and equinox solstice. As supporting instruments the solar map of the city and the protractor, for measuring shade angles, were used. It was concluded that in all the cases studied, it was not possible to obtain the maximum use of the elements. It was verified that the best type of shade element (more efficient) for the city of Natal is the mixed type (horizontal and vertical) and that the vertical shade elements are more efficient in the early mornings and late afternoon. The horizontal shade elements are used more effective at midday. We intend to present the results of this study to the architects in the region in order to show them the correct ways of using the shade elements according to the possible orientation on the facade, as a supporting tool at the time of designing a project as well as a subsidy for further discussions on the elaboration of the new urban standards for the city of Natal/RN
Resumo:
The generation of electricity in Brazil is predominantly renewable, with internal hydraulic generation being more than 70% of its energy matrix. The electricity rationing occurred in 2001 due to lack of rain, led the country to increase the participation of alternative energy sources. This need for new sources of energy makes the regional potential to be exploited, which configures the change of generation model from centralized generation to distributed generation. Among the alternative sources of energy, the solar energy is presented as very promising for Brazil, given that most of its territory is located near to the equator line, which implies days with greater number of hours of solar radiation. The state of Rio Grande do Norte (RN) has one of the highest levels of solar irradiation of the Brazilian territory, making it eligible to receive investments for the installation of photovoltaic solar plants. This thesis will present the state-of-the-art in solar photovoltaic power generation and will examine the potential for generation of solar photovoltaic power in Brazil and RN, based on solarimetrics measurements conducted by various institutions and also measurements performed in Natal, the state capital
Resumo:
This work purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system for oil pumping. The developed model is estimated the implantation cost of system through Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. The considered model not only can be applied to the oil pumping, but also for any other purposes of electric energy generation for conversion of solar, wind or solar-wind energy, that demand short powers. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F by Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, toverify if there is difference in the system cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4m/s and 6 m/s in wind of 3 m, 4m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4m. The mathematical model and the computational program may be used to others applications which require electrical between 2.250 W and 3.750 W. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar system through considered mathematical model
Resumo:
A model of a solar oven with a reflective surface composed of two mirror segments is presented, constituting a two semi-parabolic surfaces made of fiberglass, applied on a ceramic mold, intended to be used in residential and commercial cooking. The reflective surface of the semi-parable is obtained with the use of multiple plain segments of 2 mm wide mirrors. The semi-parabolic structure has visible movements that are comparable to that of the sun. The technical details of the manufacturing and assembling processes will be presented with an analysis of the viability of thermal, economic, and materials of such prototype. This prototype has important social implications and primordial aspects, which combats the ecological damages caused by the wide-scale use of firewood during cooking. It has been demonstrated that the solar oven has the capacity to cook simultaneous two meals distinct for a family of four
Resumo:
An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials
Resumo:
An cylinder-parabolic solar concentrator is presented to produce steam for different applications. This prototype was built in glass fiber with dimensions that follow a study of optimization of parameters inherent in the optical reflection of sunlight by the surface of reflection and absorption of the same by tubing that leads the fluid of work. The surface of the concentrator of 2.24 m² has been covered by layers of mirror with 1.0 m of lenght and 2.0 cm wide. The absorb tubing consists of a copper tube diameter equal to 28 mm. The concentrator is moving to follow the apparent motion of the sun. It will be presented the processes of manufacturing and assembly of the concentrator proposed, which has as main characteristics the facilities construction and assembly, in addition to reduced cost. Will be presented data from tests performed to produce steam setting up some parameters that diagnose the efficiency of the concentrator. It will be demonstrated the viabilities thermal, economic and of materials of the proposed system.The maximum temperature achieved in the vacuum tube absorber was 232.1°C and average temperature for 1 hour interval was 171.5°C, obtained in a test with automation. The maximum temperature achieved in the output of water was 197.7°C for a temperature of 200.0°C in the absorber tube. The best average result of the water exit temperature to interval of 1 hour was 170.2°C for a temperature of 171.2°C, in the absorber tube, obtained in test with automation. Water exit mean temperatures were always above of the water steaming temperature. The concentrator present a useful efficiency of 38% and a production cost of approximately R$ 450,00 ( $ 160.34)
Resumo:
An alternative box-type solar oven constructed from the scrap iron of a gas conventional cook is presented, which functions principles are the effect greenhouse and the concentration. The oven of the conventional cook is the baking enclosure where the absorber (pot) of the solar oven is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven for the concentration of the radiation and a reflecting parabola was introduced in the baking enclosure for the exploitation of the incident reflected radiation in the interior of the oven. The oven is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove in study will be demonstrate The average internal temperature of the absorber was around 150°C and the internal temperature around 120°C. Will demonstrate that its low cost and good thermal performance represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of 40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
An alternative box-type solar cooker built starting from the scrap of a tire and a scrap of old office chair is presented, which principles functions are the effect greenhouse and the concentration. The tire served as structure for making of is the baking enclosure where the absorber (roasting pan 20x30cm) of the solar is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven/cook for the concentration of the radiation and a reflecting parable was introduced in the baking enclosure for the exploitation of the incident reflected radiation inside of the oven/cook. The oven/cook is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove/cook in study will be demonstrate. The average internal temperature of the absorber was around 152,3°C and the internal temperature around 110°C. Will demonstrate that toits low cost and good thermal performance, represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.