12 resultados para urine specific gravity

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research was motivated by the requirement of asbestos s replacement in building systems and the need to generate jobs and income in the country side of the state of Bahia, Brazil. The project aimed at using fibers from licuri leaves (syagrus coronata), an abundant palm in the region, to produce composites appropriate for the sustainable production of cement fibre reinforced products in small plants. The composites were produced in laboratory using Portland cement CP-II-F32, sand, water, licuri palm fiber contents of 1.0, 1.5 and 2.0% by weight of binder (two different fiber length) and metakaolin. The latter was chosen as an additional binder for its efficiency to reduce the alkalinity of cementitious matrixes therefore preventing the degradation of vegetable fibers. The characterization of the composite components was carried out by sieving and laser particle size analyses, thermal analysis, fluorescence and X-ray diffraction. The composites performance was evaluated by 3- point-bending tests, compressive strength, ultrasound module of elasticity, free and restrained shrinkage, water capillarity absorption and apparent specific gravity. It has been found that the addition of fibers increased the time to onset of cracking over 200.00% and a 25% reduction in cracks opening in the restrained shrinkage test. The capillary absorption reduced about 25% when compared to fiber-free composites. It was also observed with regard to flexural strength, compressive strength and specific gravity, that the addiction of fibers did not affect the composite performance presenting similar results for compounds with and without fibers. In general it can be stated that the reinforced composite fibers of palm licuri presents physical and mechanical characteristics which enable them to be used in the intended proposals of this research

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given the significant share of food costs of poultry production, it is necessary to use strategies and techniques to maximize the utilization and biological value of the components of the diets, keeping constant or improving animal performance. In this context, seeking partial substitution of corn and the best use of the constituents of the diet, the present study aimed to evaluate the effects of inclusion of cashew pomace dehydrated (BCD) and enzyme complex (EC) in the diet on performance and quality eggs of Japanese quails. A total of 200 Japanese quail at 87 days of age, in 25 cages in a completely randomized design in a factorial 2 x 2 + 1 (two levels of cashew bagasse x two levels of enzymes) + control diet without cashew bagasse totaling five treatments with five replicates of eight birds each repetition. The experiment lasted 84 days, divided into four periods of 21 days. The treatments consisted of T1-Ration Control, T2-ration with 7.5% without EC BCD, T3-ration with 7.5% BCD with CE, T4-Ration with 15% BCD without EC and T5-Feed with 15% of BCD with EC. The enzyme complex (EC) is used fermentation product of Aspergillus niger, and cashew bagasse was obtained from the juice industry, passed through drying and crushing process for producing the bran. The performance and egg quality of quails, and performance variables: feed intake (FI), feed conversion ratio per dozen eggs (CAKDZ) and egg mass (CAMO), egg production (OP% bird / day), average egg weight (PMO) and egg mass (MO), and variables were egg quality, specific gravity (SG), Haugh unit (HU), yolk index, and the relationships between components eggs (%albumen,% yolk and %shell). Data were analyzed with the Statistical SAEG (2007). The 7.5 and 15% of cashew bagasse, independent of the enzyme complex decreased feed intake and improved the average egg weight. The two levels with the addition of EC showed significant differences for feed conversion by egg mass. The 7.5 with the addition of enzyme complex obtained the lowest average feed conversion per dozen eggs. The inclusion of up to 15% of cashew bagasse dehydrated with or without addition of enzyme complex in the diet of Japanese quails not interfere in the internal and external quality of eggs. The 7.5 and 15% BCD without added enzyme complex gave better means for specific gravity. Under conditions in which the experiment was conducted, it can be stated that the inclusion of up to 15% of cashew bagasse dehydrated with added enzyme complex feeding quail is economically viable, with the level of 7.5% with the addition of complex enzyme presented the best economic indices

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research was motivated by the requirement of asbestos s replacement in building systems and the need to generate jobs and income in the country side of the state of Bahia, Brazil. The project aimed at using fibers from licuri leaves (syagrus coronata), an abundant palm in the region, to produce composites appropriate for the sustainable production of cement fibre reinforced products in small plants. The composites were produced in laboratory using Portland cement CP-II-F32, sand, water, licuri palm fiber contents of 1.0, 1.5 and 2.0% by weight of binder (two different fiber length) and metakaolin. The latter was chosen as an additional binder for its efficiency to reduce the alkalinity of cementitious matrixes therefore preventing the degradation of vegetable fibers. The characterization of the composite components was carried out by sieving and laser particle size analyses, thermal analysis, fluorescence and X-ray diffraction. The composites performance was evaluated by 3- point-bending tests, compressive strength, ultrasound module of elasticity, free and restrained shrinkage, water capillarity absorption and apparent specific gravity. It has been found that the addition of fibers increased the time to onset of cracking over 200.00% and a 25% reduction in cracks opening in the restrained shrinkage test. The capillary absorption reduced about 25% when compared to fiber-free composites. It was also observed with regard to flexural strength, compressive strength and specific gravity, that the addiction of fibers did not affect the composite performance presenting similar results for compounds with and without fibers. In general it can be stated that the reinforced composite fibers of palm licuri presents physical and mechanical characteristics which enable them to be used in the intended proposals of this research