2 resultados para urine reagent strip
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.
Resumo:
The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.