4 resultados para ubiquitous computing
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Hospital Automation is an area that is constantly growing. The emergency of new technologies and hardware is transforming the processes more efficient. Nevertheless, some of the hospital processes are still being performed manually, such as monitoring of patients that is considered critical because it involves human lives. One of the factors that should be taken into account during a monitoring is the agility to detect any abnormality in vital signs of patients, as well as warning of this anomaly to the medical team involved. So, this master's thesis aims to develop an architecture to automate this process of monitoring and reporting of possible alert to a professional, so that emergency care can be done effectively. The computing mobile was used to improve the communication by distributing messages between a central located into the hospital and the mobile carried by the duty
Resumo:
One of the current challenges of Ubiquitous Computing is the development of complex applications, those are more than simple alarms triggered by sensors or simple systems to configure the environment according to user preferences. Those applications are hard to develop since they are composed by services provided by different middleware and it is needed to know the peculiarities of each of them, mainly the communication and context models. This thesis presents OpenCOPI, a platform which integrates various services providers, including context provision middleware. It provides an unified ontology-based context model, as well as an environment that enable easy development of ubiquitous applications via the definition of semantic workflows that contains the abstract description of the application. Those semantic workflows are converted into concrete workflows, called execution plans. An execution plan consists of a workflow instance containing activities that are automated by a set of Web services. OpenCOPI supports the automatic Web service selection and composition, enabling the use of services provided by distinct middleware in an independent and transparent way. Moreover, this platform also supports execution adaptation in case of service failures, user mobility and degradation of services quality. The validation of OpenCOPI is performed through the development of case studies, specifically applications of the oil industry. In addition, this work evaluates the overhead introduced by OpenCOPI and compares it with the provided benefits, and the efficiency of OpenCOPI s selection and adaptation mechanism
Resumo:
Ubiquitous computing systems operate in environments where the available resources significantly change during the system operation, thus requiring adaptive and context aware mechanisms to sense changes in the environment and adapt to new execution contexts. Motivated by this requirement, a framework for developing and executing adaptive context aware applications is proposed. The PACCA framework employs aspect-oriented techniques to modularize the adaptive behavior and to keep apart the application logic from this behavior. PACCA uses abstract aspect concept to provide flexibility by addition of new adaptive concerns that extend the abstract aspect. Furthermore, PACCA has a default aspect model that considers habitual adaptive concerns in ubiquitous applications. It exploits the synergy between aspect-orientation and dynamic composition to achieve context-aware adaptation, guided by predefined policies and aim to allow software modules on demand load making possible better use of mobile devices and yours limited resources. A Development Process for the ubiquitous applications conception is also proposed and presents a set of activities that guide adaptive context-aware developer. Finally, a quantitative study evaluates the approach based on aspects and dynamic composition for the construction of ubiquitous applications based in metrics
Resumo:
Wireless Sensor and Actuator Networks (WSAN) are a key component in Ubiquitous Computing Systems and have many applications in different knowledge domains. Programming for such networks is very hard and requires developers to know the available sensor platforms specificities, increasing the learning curve for developing WSAN applications. In this work, an MDA (Model-Driven Architecture) approach for WSAN applications development called ArchWiSeN is proposed. The goal of such approach is to facilitate the development task by providing: (i) A WSAN domain-specific language, (ii) a methodology for WSAN application development; and (iii) an MDA infrastructure composed of several software artifacts (PIM, PSMs and transformations). ArchWiSeN allows the direct contribution of domain experts in the WSAN application development without the need of specialized knowledge on WSAN platforms and, at the same time, allows network experts to manage the application requirements without the need for specific knowledge of the application domain. Furthermore, this approach also aims to enable developers to express and validate functional and non-functional requirements of the application, incorporate services offered by WSAN middleware platforms and promote reuse of the developed software artifacts. In this sense, this Thesis proposes an approach that includes all WSAN development stages for current and emerging scenarios through the proposed MDA infrastructure. An evaluation of the proposal was performed by: (i) a proof of concept encompassing three different scenarios performed with the usage of the MDA infrastructure to describe the WSAN development process using the application engineering process, (ii) a controlled experiment to assess the use of the proposed approach compared to traditional method of WSAN application development, (iii) the analysis of ArchWiSeN support of middleware services to ensure that WSAN applications using such services can achieve their requirements ; and (iv) systematic analysis of ArchWiSeN in terms of desired characteristics for MDA tool when compared with other existing MDA tools for WSAN.