4 resultados para tree-dimensional analytical solution
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The visualization of three-dimensional(3D)images is increasigly being sed in the area of medicine, helping physicians diagnose desease. the advances achived in scaners esed for acquisition of these 3d exames, such as computerized tumography(CT) and Magnetic Resonance imaging (MRI), enable the generation of images with higher resolutions, thus, generating files with much larger sizes. Currently, the images of computationally expensive one, and demanding the use of a righ and computer for such task. The direct remote acess of these images thruogh the internet is not efficient also, since all images have to be trasferred to the user´s equipment before the 3D visualization process ca start. with these problems in mind, this work proposes and analyses a solution for the remote redering of 3D medical images, called Remote Rendering (RR3D). In RR3D, the whole hedering process is pefomed a server or a cluster of servers, with high computational power, and only the resulting image is tranferred to the client, still allowing the client to peform operations such as rotations, zoom, etc. the solution was developed using web services written in java and an architecture that uses the scientific visualization packcage paraview, the framework paraviewWeb and the PACS server DCM4CHEE.The solution was tested with two scenarios where the rendering process was performed by a sever with graphics hadwere (GPU) and by a server without GPUs. In the scenarios without GPUs, the soluction was executed in parallel with several number of cores (processing units)dedicated to it. In order to compare our solution to order medical visualization application, a third scenario was esed in the rendering process, was done locally. In all tree scenarios, the solution was tested for different network speeds. The solution solved satisfactorily the problem with the delay in the transfer of the DICOM files, while alowing the use of low and computers as client for visualizing the exams even, tablets and smart phones
Resumo:
The motion capture is a main tool for quantitative motion analyses. Since the XIX century, several motion caption systems have been developed for biomechanics study, animations, games and movies. The biomechanics and kinesiology involves and depends on knowledge from distinct fields, the engineering and health sciences. A precise human motion analysis requires knowledge from both fields. It is necessary then the use of didactics tools and methods for research and teaching for learning aid. The devices for analysis and motion capture currently that are found on the market and on educational institutes presents difficulties for didactical practice, which are the difficulty of transportation, high cost and limited freedom for the user towards the data acquisition. Therefore, the motion analysis is qualitatively performed or is quantitatively performed in highly complex laboratories. Based is these problems, this work presents the development of a motion capture system for didactic use hence a cheap, light, portable and easily used device with a free software. This design includes the selection of the device, the software development for that and tests. The developed system uses the device Kinect, from Microsoft, for its low cost, low weight, portability and easy use, and delivery tree-dimensional data with only one peripheral device. The proposed programs use the hardware to make motion captures, store them, reproduce them, process the motion data and graphically presents the data.
Resumo:
Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados
Resumo:
Embora tenha sido proposto que a vasculatura retínica apresenta estrutura fractal, nenhuma padronização do método de segmentação ou do método de cálculo das dimensões fractais foi realizada. Este estudo objetivou determinar se a estimação das dimensões fractais da vasculatura retínica é dependente dos métodos de segmentação vascular e dos métodos de cálculo de dimensão. Métodos: Dez imagens retinográficas foram segmentadas para extrair suas árvores vasculares por quatro métodos computacionais (“multithreshold”, “scale-space”, “pixel classification” e “ridge based detection”). Suas dimensões fractais de “informação”, de “massa-raio” e “por contagem de caixas” foram então calculadas e comparadas com as dimensões das mesmas árvores vasculares, quando obtidas pela segmentação manual (padrão áureo). Resultados: As médias das dimensões fractais variaram através dos grupos de diferentes métodos de segmentação, de 1,39 a 1,47 para a dimensão por contagem de caixas, de 1,47 a 1,52 para a dimensão de informação e de 1,48 a 1,57 para a dimensão de massa-raio. A utilização de diferentes métodos computacionais de segmentação vascular, bem como de diferentes métodos de cálculo de dimensão, introduziu diferença estatisticamente significativa nos valores das dimensões fractais das árvores vasculares. Conclusão: A estimação das dimensões fractais da vasculatura retínica foi dependente tanto dos métodos de segmentação vascular, quanto dos métodos de cálculo de dimensão utilizados