13 resultados para time history analysis
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work I have searched the symbolical sense of a specific place. I have started from the theoretical assumption that places are social relations resulting from material and symbolical conditions developed in a certain time and by certain factors. In this sense, I have analyzed the symbolical aspect of sugar plantation from some literary works created by the writer José Lins do Rego from the state of Paraíba. I intend to analyze the symbolical dimension senses, values and images used by this writer to show the sugar plantation. Giving special attention to the works from the named cycle of sugar plantation , I have searched for the senses and meanings used in José Lins do Rego literary discourse to create a fictional sugar plantation, showing this place in a specific way. Based in cultural history, I have used several sources: literary works, prefaces of books, memory works, journalistic works, letters written by intellectual men and history books. My time of analysis is from 1919 the beginning of José Lins do Rego s intellectual activity - until 1943 publication of Fogo Morto, last literary work that I have analyzed. In symbolical terms, what is sugar plantation, this place that has totally touched José Lins do Regos life and literary work? That was the structural question that has determined the present research
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis
Resumo:
One of the objectives of this work is the ana1ysis of planar structures using the PBG (photonic Bandgap), a new method of controlling propagation of electromagnetic waves in devices with dielectrics. Here the basic theory of these structures will be presented, as well as applications and determination of certain parameters. In this work the analysis will be performed concerning PBG structures, including the basic theory and applications in planar structures. Considerations are made related to the implementation of devices. Here the TTL (Transverse Transmission Line) method is employed, characterized by the simplicity in the treatment of the equations that govern the propagation of electromagnetic waves in the structure. In this method, the fields in x and z are expressed in function of the fields in the traverse direction y in FTD (Fourier Transform Domain). This method is useful in the determination of the complex propagation constant with application in high frequency and photonics. In this work structures will be approached in micrometric scale operating in frequencies in the range of T erahertz, a first step for operation in the visible spectra. The mathematical basis are approached for the determination of the electromagnetic fields in the structure, based on the method L TT taking into account the dimensions approached in this work. Calculations for the determination of the constant of complex propagation are also carried out. The computational implementation is presented for high frequencies. at the first time the analysis is done with base in open microstrip lines with semiconductor substrate. Finally, considerations are made regarding applications ofthese devices in the area of telecommunications, and suggestions for future
Resumo:
The opening of the Brazilian market of electricity and competitiveness between companies in the energy sector make the search for useful information and tools that will assist in decision making activities, increase by the concessionaires. An important source of knowledge for these utilities is the time series of energy demand. The identification of behavior patterns and description of events become important for the planning execution, seeking improvements in service quality and financial benefits. This dissertation presents a methodology based on mining and representation tools of time series, in order to extract knowledge that relate series of electricity demand in various substations connected of a electric utility. The method exploits the relationship of duration, coincidence and partial order of events in multi-dimensionals time series. To represent the knowledge is used the language proposed by Mörchen (2005) called Time Series Knowledge Representation (TSKR). We conducted a case study using time series of energy demand of 8 substations interconnected by a ring system, which feeds the metropolitan area of Goiânia-GO, provided by CELG (Companhia Energética de Goiás), responsible for the service of power distribution in the state of Goiás (Brazil). Using the proposed methodology were extracted three levels of knowledge that describe the behavior of the system studied, representing clearly the system dynamics, becoming a tool to assist planning activities
Resumo:
The semiarid rainfall regime is northeastern Brazil is highly variable. Climate processes associated with rainfall are complex and their effects may represent extreme situations of drought or floods, which can have adverse effects on society and the environment. The regional economy has a significant agricultural component, which is strongly influenced by weather conditions. Maximum precipitation analysis is traditionally performed using the intensity-duration-frequency (IDF) probabilistic approach. Results from such analysis are typically used in engineering projects involving hydraulic structures such as drainage network systems and road structures. On the other hand, precipitation data analysis may require the adoption of some kind of event identification criteria. The minimum inter-event duration (IMEE) is one of the most used criteria. This study aims to analyze the effect of the IMEE on the obtained rain event properties. For this purpose, a nine-year precipitation time series (2002- 2011) was used. This data was obtained from an automatic raingauge station, installed in an environmentally protected area, Ecological Seridó Station. The results showed that adopted IMEE values has an important effect on the number of events, duration, event height, mean rainfall rate and mean inter-event duration. Furthermore, a higher occurrence of extreme events was observed for small IMEE values. Most events showed average rainfall intensity higher than 2 mm.h-1 regardless of IMEE. The storm coefficient of advance was, in most cases, within the first quartile of the event, regardless of the IMEE value. Time series analysis using partial time series made it possible to adjust the IDF equations to local characteristics
Resumo:
In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases
Resumo:
The study of sunspots consistently contributed to a better understanding of magnetic phenomena of the Sun, as its activity. It was found with the dynamics of sunspots that the Sun has a rotation period of twenty-seven days around your axis. With the help of Project Sun-As-A-Star that solar spectra obtained for more than thirty years we observed oscillations of both the depth of the spectral line and its equivalent width, and analysis of the return information about the characteristics of solar magnetism. It also aims to find patterns of solar magnetic activity cycle and the average period of rotation of the Sun will indicate the spectral lines that are sensitive to magnetic activity and which are not. Sensitive lines how Ti II 5381.0 Å stands as the best indicator of the solar rotation period and also shows different periods of rotation cycles of minimum and maximum magnetic activity. It is the first time we observe clearly distinct rotation periods in the different cycles. The analysis also shows that Ca II 8542.1 Å and HI 6562.0 Å indicate the cycle of magnetic activity of eleven years. Some spectral lines no indicated connection with solar activity, this result can help us search for programs planets using spectroscopic models. Data analysis was performed using the Lomb-Scargle method that makes the time series analysis for unequally spaced data. Observe different rotation periods in the cycles of magnetic activity accounts for a discussion has been debated for many decades. We verified that spectroscopy can also specify the period of stellar rotation, thus being able to generalize the method to other stars
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.
Resumo:
This work proposes a modified control chart incorporating concepts of time series analysis. Specifically, we considerer Gaussian mixed transition distribution (GMTD) models. The GMTD models are a more general class than the autorregressive (AR) family, in the sense that the autocorrelated processes may present flat stretches, bursts or outliers. In this scenario traditional Shewhart charts are no longer appropriate tools to monitoring such processes. Therefore, Vasilopoulos and Stamboulis (1978) proposed a modified version of those charts, considering proper control limits based on autocorrelated processes. In order to evaluate the efficiency of the proposed technique a comparison with a traditional Shewhart chart (which ignores the autocorrelation structure of the process), a AR(1) Shewhart control chart and a GMTD Shewhart control chart was made. An analytical expression for the process variance, as well as control limits were developed for a particular GMTD model. The ARL was used as a criteria to measure the efficiency of control charts. The comparison was made based on a series generated according to a GMTD model. The results point to the direction that the modified Shewhart GMTD charts have a better performance than the AR(1) Shewhart and the traditional Shewhart.
Resumo:
The time series analysis has played an increasingly important role in weather and climate studies. The success of these studies depends crucially on the knowledge of the quality of climate data such as, for instance, air temperature and rainfall data. For this reason, one of the main challenges for the researchers in this field is to obtain homogeneous series. A time series of climate data is considered homogeneous when the values of the observed data can change only due to climatic factors, i.e., without any interference from external non-climatic factors. Such non-climatic factors may produce undesirable effects in the time series, as unrealistic homogeneity breaks, trends and jumps. In the present work it was investigated climatic time series for the city of Natal, RN, namely air temperature and rainfall time series, for the period spanning from 1961 to 2012. The main purpose was to carry out an analysis in order to check the occurrence of homogeneity breaks or trends in the series under investigation. To this purpose, it was applied some basic statistical procedures, such as normality and independence tests. The occurrence of trends was investigated by linear regression analysis, as well as by the Spearman and Mann-Kendall tests. The homogeneity was investigated by the SNHT, as well as by the Easterling-Peterson and Mann-Whitney-Pettit tests. Analyzes with respect to normality showed divergence in their results. The von Neumann ratio test showed that in the case of the air temperature series the data are not independent and identically distributed (iid), whereas for the rainfall series the data are iid. According to the applied testings, both series display trends. The mean air temperature series displays an increasing trend, whereas the rainfall series shows an decreasing trend. Finally, the homogeneity tests revealed that all series under investigations present inhomogeneities, although they breaks depend on the applied test. In summary, the results showed that the chosen techniques may be applied in order to verify how well the studied time series are characterized. Therefore, these results should be used as a guide for further investigations about the statistical climatology of Natal or even of any other place.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis