2 resultados para thermo-sensitive polymers

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study describes the stability and rheological behavior of suspensions of poly (N-isopropylacrylamide) (PNIPAM), poly (N-isopropylacrylamide)-chitosan (PNIPAMCS), and poly (N-isopropylacrylamide)-chitosan-poly (acrylic acid) (PNIPAM-CS-PAA) crosslinked particles sensitive to pH and temperature. These dual-sensitive materials were simply obtained by one-pot method, via free-radical precipitation copolymerization with potassium persulfate, using N,N -methylenebisacrylamide (MBA) as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests and analytical centrifugation. The PNIPAM-CS particles showed higher stability in acid and neutral media, whereas PNIPAM-CS-PAA particles were more stable in neutral and alkaline media, both below and above the LCST of poly (Nisopropylacrylamide) (stability data). This is due to different interparticle interactions, as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH-sensitive polymers to crosslinked poly (Nisopropylacrylamide) particles not only produced dual-sensitive materials, but allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment