4 resultados para ternary epistemology, third-inclusive, tertium datur, map, map structure, painted picture.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.
Resumo:
In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.
Resumo:
This thesis was performed in four chapters, at the theoretical level, focused mainly on electronic density. In the first chapter, we have applied an undergraduate minicourse of Diels-Alder reaction in Federal University of Rio Grande do Norte. By using computational chemistry tools students could build the knowledge by themselves and they could associate important aspects of physical-chemistry with Organic Chemistry. In the second chapter, we studied a new type of chemical bond between a pair of identical or similar hydrogen atoms that are close to electrical neutrality, known as hydrogen-hydrogen (H-H) bond. In this study performed with complexed alkanes, provides new and important information about their stability involving this type of interaction. We show that the H-H bond playing a secondary role in the stability of branched alkanes in comparison with linear or less branched isomers. In the third chapter, we study the electronic structure and the stability of tetrahedrane, substituted tetrahedranes and silicon and germanium parents, it was evaluated the substituent effect on the carbon cage in the tetrahedrane derivatives and the results indicate that stronger electron withdrawing groups (EWG) makes the tetrahedrane cage slightly unstable while slight EWG causes a greater instability in the tetrahedrane cage. We showed that the sigma aromaticity EWG and electron donating groups (EDG) results in decrease and increase, respectively, of NICS and D3BIA aromaticity indices. In addition, another factor can be utilized to explain the stability of tetra-tert-butyltetrahedrane as well as HH bond. GVB and ADMP were also used to explain the stability effect of the substituents bonded to the carbon of the tetrahedrane cage. In the fourth chapter, we performed a theoretical investigation of the inhibitory effect of the drug abiraterone (ABE), used in the prostate cancer treatment as CYP17 inhibitor, comparing the interaction energies and electron density of the ABE with the natural substrate, pregnenolone (PREG). Molecular dynamics and docking were used to obtain the CYP1ABE and CYP17-PREG complexes. From molecular dynamics was obtained that the ABE has higher diffusion trend water CYP17 binding site compared to the PREG. With the ONIOM (B3LYP:AMBER) method, we find that the interaction electronic energy of ABE is 21.38 kcal mol-1 more stable than PREG. The results obtained by QTAIM indicate that such stability is due a higher electronic density of interactions between ABE and CYP17
Resumo:
Fucan is a term used to denominate L-fucose rich sulfated polysaccharides. The fucans have been studied due their pharmacological activities like antithrombotic, antiproliferative and antioxidant. We have extracted three fucan fractions from the brown seaweed Spatoglossum schröederi. These fucans were denominated Fuc B 1, Fuc B 1.5 and Fuc B 2. The chemical analyzes show that the fucans have very similar composition as demonstrated by agarose electrophoresis gel, sugar and sulfate content. The antiproliferative effect was determined by MTT and BrdU methodologies in CHO cells. The inhibition of proliferation effect of the three fractions was about 40%. Therefore this we proceed just with the Fuc B 2 due the higher yield. There is no apoptosis indication using the anexin V/propidium iodide test. We found a cell cycle phase G1 arrest. The western blotting show that the PKC; pFAK; pERK 1/2 are activated when the cells were treated with fucans. The treatement with inhibitor of MAPK PD98059 extinguished the fucan effect. These results indicates that fucan act by the ERK pathway inducing the cell death.