3 resultados para teores de nutrientes

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Availability of good quality water has been reduced vertiginously, over the last decade, in the world. In some regions, the water resources have high concentration of the dissolved salts, these characteristics of the water make it s use impossible. Water quality can be a limitation for irrigated agriculture, principally in regions of arid or semiarid climate where the water resources are generally saline and are exposed at high evaporation ratio. For that reason, precipitation of the salts occurs near the soil surface and those salts themselves cumulate in the vegetal tissue, reducing the soil fertility and crop production. The adoption of tolerant crop to the water salinity and soil salinity, adaptable to the climatic conditions is other emergent necessity. This work had the goal of studying the effects of four salinity levels of the irrigation water salinity and use of mulch, dried leaves of Forest mangrove (Acacia mangiumWilld), in cultivated soil with amaranth (Amaranthus cruentus, BRS Alegria variety), in greenhouse. It was utilized the transplant of plants to PVC columns, containing 30 kg of silty loam soil, 10 days after emerging, with space of 50 x 50 cm between lines. Treatments were composed by combination of four levels of salinity (0.147; 1.500; 3.000 e 4.500 dS m-1), obtained by addition NaCl (commercial) to irrigation water and soil with and without protection, by mulch. A factorial system 4 x 2 was used with four repetitions, totalizing 32 parcels. The concentrations of nutrients in soil solution have been evaluated, in the dry matter of the vegetal tissue (roots, stem, leaves and raceme residue), at the end of the vegetative cycle. The use of soil protection reduced time for the beginning inflorescence of plants, at the same time, the increase of the salinity delayed this phase of amaranth development. The use of the mulch effectively increased the height, stem diameter, area of the larger leaf, humidity and dry matter content and amaranth grain production. The vegetal species showed salinity tolerance to experimented levels. The adopted treatments did not affect the pH values, exchangeable cation contents, electrical conductivity of soil solution (EC1:5) and saturated extract (ECSE), and Ca+2, Mg+, Fe+2 and Mn+2 contents, in the soil solution. The increase of the salinity concentration in the irrigation water inhibited the mineralization process of the organic matter (OM) and, consequently, the efficiency in the it´s utilization by plants, at the same time, produced increase in the values of the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR) and potassium adsorption ratio (PAR), in the soil solution. Therefore, the use of the mulch did not affect the first three parameters. The protein and nutrient contents: K+, Ca+2, P, Mg+2 e Cu+2, in amaranth grains, were improved by tillage condition. The raceme residues showed chemical/nutritional composition that makes advantageous its application in animal ration. In this context, it follows that amaranth tolerate the saline stress, of the irrigation water, until 4.500 dS m-1, temperature and relative humidity of the air predominant in the experimental environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human activities alter soil features, causing the deterioration of its quality. Land use and occupation in drainage basins of water supply reservoirs can change the environmental soil quality and, thus, lead to the expansion of the soil potential of being a diffuse pollution source. In the Brazilian semiarid region, the soils are generally shallow with high susceptibility to erosion, favoring the sediment and nutrients input into the superficial waterbodies, contributing to the eutrophication process. Moreover, this region has high temperatures and high evapotranspiration rates, that are generally higher than the precipitation rates, causing a negative hydric balance and big volume losses by evaporation. The water volume reduction increases the nutrients’ concentration and, therefore, exacerbates the eutrophication process, deteriorating the water quality. Thereby, we hypothesized that the eutrophication process of semiarid reservoirs is intensified both by the extreme climatic events of prolonged drought, and by the diffuse pollution due to the basin land use and occupation. The study aimed to test whether the land use and occupation activities of the basin and the severe drought events intensify the eutrophication process of a semiarid tropical reservoir. To verify the influence of human activities carried out in the water supply of drainage basin on the soil quality and the eutrophication process, we conducted the mapping of the kind of use and occupation, as well the calculation of erosion for each activity and the soil quality evaluation of the riparian zone and water quality of the water supply. For the water analyses, the samplings were carried out monthly in the deeper point, near dam. For the soil, deformed composite samples were taken for the physical and chemical attributes analysis, according to the identified land use and occupation classes. The results showed that extreme droughts drastically reduces the water volume and elevates the nutrients concentration, contributing, thus, to a bigger degradation of water quality. Furthermore, we verified that human activities in the drainage basin promote the diffuse pollution, by increasing the soil susceptibility to erosion and nutrients contents. Summarizing, our results support the investigated hypothesis that activities of land use and occupation and extreme drought generate a combined effect that provide the intensification of eutrophication process of semiarid reservoirs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liquid of the rind of green coconut (LCCV), an effluent stream from the industrial processing of green coconut rind, is rich in sugars and is a suitable feedstock for fermentation. The first step of this study was to evaluate the potential of natural fermentation of LCCV. As the literature did not provide any information about LCCV and due to the difficulty of working with such an organic effluent, the second step was to characterize the LCCV and to develop a synthetic medium to explore its potential as a bioprocess diluent. The third step was to evaluate the influence of initial condensed and hydrolysable tannins on alcoholic fermentation. The last step of this work was divided into several stages: in particular to evaluate (1) the influence of the inoculum, temperature and agitation on the fermentation process, (2) the carbon source and the use of LCCV as diluent, (3) the differences between natural and synthetic fermentation of LCCV, in order to determine the best process conditions. Characterization of LCCV included analyses of the physico-chemical properties as well as the content of DQO, DBO and series of solids. Fermentation was carried out in bench-scale bioreactors using Saccharomyces cerevisiae as inoculum, at a working volume of 5L and using 0.30% of soy oil as antifoam. During fermentations, the effects of different initial sugars concentrations (10 - 20%), yeast concentrations (5 and 7.5%), temperatures (30 - 50°C) and agitation rates (400 and 500 rpm) on pH/sugars profiles and ethanol production were evaluated. The characterization of LCCV demonstrated the complexity and variability of the liquid. The best conditions for ethanol conversion were (1) media containing 15% of sugar; (2) 7.5% yeast inoculum; (3) temperature set point of 40°C and (4) an agitation rate of 500 rpm, which resulted in an ethanol conversion rate of 98% after 6 hours of process. A statistical comparison of results from natural and synthetic fermentation of LCCV showed that both processes are similar