3 resultados para temporal and spatial pattern
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The state of Rio Grande do Norte, possessor of an extremely irregular regime of rains, has the necessity of enlarge and specify the researches about its own hydro-climatic conditions, to achieve trustworthy results that are able to minimize the adversities imposed by these conditions and make possible the implementation of a better planning in the economic activities and of subsistence that somehow utilize of the multiple uses of hydro resources of the State. This way, the daily values observed from the pluviometric series of 166 posts, with 45 years uninterrupted of historic data, were adjusted to the incomplete gamma function to the determination of the probability of rain in the 36 period of ten days in which the year was divided. To the attainment of the α and β parameters of this function it was applied the method of the maximum verisimilitude allowing, in the end, to analyze the temporal and spatial distribution of the rain in the level of 75% of probability. The values of potential evapo-transpiration were calculated by the Linacre method that, through the SURFER software, were confronted with the dependant rain, obtaining, in this way, the spatialization of the potential hydro availability, which the values can be known to any period of ten days of the year, city and/or region of the state of Rio Grande do Norte. With the identification of the main meteorological systems that act in the State, we sought to better comprehend how this systems interfere, in the irregular regime of rain, in the situations of several clime in the major part of Rio Grande do Norte and in the hydro regional balance. And, finally, with these data in hand and with the generated maps, we verified that space-temporal distribution of the rain and of the potential hydro availability were heterogeneous in the whole State, mainly in the West and Central regions, inserted in potiguar s semi-arid, which, after the period of the rains station, suffers with dry season and length drought during the rest of the year
Resumo:
The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album
Resumo:
Orbital remote sensing has been used as a beneficial tool in improving the knowledge on oceanographic and hydrodynamic aspects in northern portion of the continental shelf of Rio Grande do Norte, offshore Potiguar Basin. Aspects such as geography, temporal and spatial resolution combined with a consistent methodology and provide a substantial economic advantage compared to traditional methods of in situ data collecting. Images of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's AQUA satellite were obtained to support systematic data collections related to the campaign of environmental monitoring and characterization of Potiguar Basin, held in May 2004. Images of Total Suspension Matter (TSM) and values of radiance standard were generated for the calculation of concentrations of total suspension matter (TSM), chlorophyll-a and sea surface temperature (SST). These data sets were used for statistical comparisons between measures in situ and satellite estimates looking validate algorithms or develop a comprehensive regional approach empirically. AQUA-MODIS images allowed the simultaneous comparison of two-dimensional water quality (total suspension matter), phytoplankton biomass (chlorophyll-a) variability and physical (temperature). For images of total suspension matter, the generated models showed a good correlation with the field data, allowing quantitative and qualitative analysis. The images of chlorophyll-a showed a consistent correlation with the in situ values of concentration. The algorithms adjusted for these images obtained a correlation coefficient fairly well with the data field in order that the sensor can be having an effect throughout the water column and not just the surface. This has led to a fit between the data of chlorophyll-the integration of the average sampling interval of the entire water column up to the level of the first optical depth, with the data generated from the images. This method resulted in higher values of chlorophyll concentration to greater depths, due to the fact that we are integrating more values of chlorophyll in the water column. Thus we can represent the biomass available in the water column. Images SST and SST measures in situ showed a mean difference DT (SST insitu - SST sat) around -0.14 ° C, considered low, making the results very good. The integration of total suspension matter, chlorophyll-a, the temperature of the sea surface (SST) and auxiliary data enabled the recognition of some of the main ways to fund the continental shelf. The main features highlighted were submerged canyons of rivers Apodi and Açu, some of the lines and beachrocks reefs, structural highs and the continental shelf break which occurs at depths around -60 m. The results confirmed the high potential for use of the AQUA-MODIS images to environmental monitoring of sea areas due to ease of detection of the field two-dimensional material in suspension on the sea surface, temperature and the concentration of chlorophyll-a