1 resultado para temperature-based models
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (27)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (50)
- CentAUR: Central Archive University of Reading - UK (96)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (12)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (5)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (75)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (2)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (7)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (70)
- Queensland University of Technology - ePrints Archive (99)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (55)
- SAPIENTIA - Universidade do Algarve - Portugal (11)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (17)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (7)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (11)
- University of Washington (2)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
RePART (Reward/Punishment ART) is a neural model that constitutes a variation of the Fuzzy Artmap model. This network was proposed in order to minimize the inherent problems in the Artmap-based model, such as the proliferation of categories and misclassification. RePART makes use of additional mechanisms, such as an instance counting parameter, a reward/punishment process and a variable vigilance parameter. The instance counting parameter, for instance, aims to minimize the misclassification problem, which is a consequence of the sensitivity to the noises, frequently presents in Artmap-based models. On the other hand, the use of the variable vigilance parameter tries to smoouth out the category proliferation problem, which is inherent of Artmap-based models, decreasing the complexity of the net. RePART was originally proposed in order to minimize the aforementioned problems and it was shown to have better performance (higer accuracy and lower complexity) than Artmap-based models. This work proposes an investigation of the performance of the RePART model in classifier ensembles. Different sizes, learning strategies and structures will be used in this investigation. As a result of this investigation, it is aimed to define the main advantages and drawbacks of this model, when used as a component in classifier ensembles. This can provide a broader foundation for the use of RePART in other pattern recognition applications