4 resultados para target organ
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
PURPOSE: To evaluate if the ileum resection changes the functioning liver cell mass, the hepatic metabolism and the biodistribution of radiopharmaceutical in rats. METHODS: Twelve Wistar rats weighing 285g±34g were randomly divided into the ileum resection group (n = 6) and sham group rats (n = 6). After 30 days, they were anesthetized and 0.1mL of 99m-Tc-phytate(0.66MBq) was injected via femoral vein. After 30 minutes, blood samples were collected for red blood cells radioactive labeling and serum ALT, AST and gammaGT. Liver samples were used for 99m-Tc-phytatepercentage of radioactivity/gram of tissue and histopathology. Student’s t test was used with significance 0.05. RESULTS: There was a higher uptake of 99m-Tc-phytate in the liver of sham rats, compared to the ileum resection group (p<0.05). GammaGT, ALT and AST were increased in ileum resection rats compared to sham (p<0.05). The he patocytes count was significantly lower in ileum resection group than in sham (p<0.05). Liver: body mass ratio was lower in experimental animals than in sham group (p<0.05). CONCLUSION: These data support that the ileum has important role in liver function and liver mass regulation, and they have potential clinical implications regarding the pathogenesis of liver injury following lower bowel resection.
Resumo:
Gene therapy is one of the major challenges of the post-genomic research and it is based on the transfer of genetic material into a cell, tissue or organ in order to cure or improve the patient s clinical status. In general, gene therapy consists in the insertion of functional genes aiming substitute, complement or inhibit defective genes. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, a key issue is to create systems, vectors, able to transfer and protect the DNA until it reaches the target. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easy to produce, present suitable stability and enable transfection. The aim of this work was to evaluate two different non-viral vectors, cationic liposomes and nanoemulsions, and the possibility of their use in gene therapy. For the two systems, cationic lipids and helper lipids were used. Nanoemulsions were prepared using sonication method and were composed of Captex® 355; Tween® 80; Spam® 80; cationic lipid, Stearylamine (SA) or 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) and water (Milli-Q®). These systems were characterized by average droplet size, Polidispersion Index (PI) and Zeta Potential. The stability of the systems; as well as the DNA compaction capacity; their cytotoxicity and the cytotoxicity of the isolated components; and their transfection capacity; were also evaluated. Liposomes were made by hydration film method and were composed of DOTAP; 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), containing or not Rhodaminephosphatidylethanolamine (PE- Rhodamine) and the conjugate Hyaluronic Acid DOPE (HA-DOPE). These systems were also characterized as nanoemulsions. Stability of the systems and the influence of time, size of plasmid and presence or absence of endotoxin in the formation of lipoplexes were also analyzed. Besides, the ophthalmic biodistribution of PE-Rhodamine containing liposomes was studied after intravitreal injection. The obtained results show that these systems are promising non-viral vector for further utilization in gene therapy and that this field seems to be very important in the clinical practice in this century. However, from the possibility to the practice, there is still a long way
Desenvolvimento de sistemas magnéticos com potencialidades terapêuticas para vetorização de fármacos
Resumo:
Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.
Resumo:
Broadly speaking, the concept of gene therapy involves the transfer of a genetic material into a cell, tissue, or organ in order to cure a disease or at least improve the clinical status of a patient. Making it simple, gene therapy consists in the insertion of functional genes into cells containing defective genes by substituting, complementing or inhibiting them. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, it is a key issue to create systems able to transfer and protect the DNA until it reaches the target, the vectors. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easily produced, present controllable stability and enable transfection. The aim of this work was to develop an emulsion for gene therapy and evaluate its ability to compact nucleic acids by the development of a complex with the plasmid pIRES2-EGFP. The first step was to determine the Hydrophilic Lipophilic Balance (HLB) of the Captex® 355 (oily internal phase of the emulsion) through long and short term stability assays. Based on the results, emulsions composed of Captex® 355, Tween 20® and Span 60® with 10.7 HLB were produced by three different methods: phase inversion, spontaneous emulsification and sonication. The results showed that the lowest diameter and best stability of the emulsions were achieved by the sonication method. The cationic emulsions were made by adding DOTAP to the basic emulsion. Its association with pIRES2-EGFP was evaluated by electrophoresis. Several rates of emulsion and DNA were evaluated and the results showed that 100% of the complex was formed when the rate DOTAP/DNA(nmol/µg) was 130. In conclusion, the overall results show the ability of the proposed emulsion to compact pIRES2-EGFP, which is a requirement to a successful transfection. Therefore, such formulation may be considered a promising candidate for gene therapy