2 resultados para surface amorphous layer

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent decades, changes in the surface properties of materials have been used to improve their tribological characteristics. However, this improvement depends on the process, treatment time and, primarily, the thickness of this surface film layer. Physical vapor deposition (PVD) of titanium nitrate (TiN) has been used to increase the surface hardness of metallic materials. Thus, the aim of the present study was to propose a numerical-experimental method to assess the film thickness (l) of TiN deposited by PVD. To reach this objective, experimental results of hardness (H) assays were combined with a numerical simulation to study the behavior of this property as a function of maximum penetration depth of the indenter (hmax) into the film/substrate conjugate. Two methodologies were adopted to determine film thickness. The first consists of the numerical results of the H x hmax curve with the experimental curve obtained by the instrumental indentation test. This methodology was used successfully in a TiN-coated titanium (Ti) conjugate. A second strategy combined the numerical results of the Hv x hmax curve with Vickers experimental hardness data (Hv). This methodology was applied to a TiN-coated M2 tool steel conjugate. The mechanical properties of the materials studied were also determined in the present study. The thicknesses results obtained for the two conjugates were compatible with their experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, were produced ceramic matrix composites based in SiCxOy e Al2O3 reinforced with NbC, by hydrosilylation reaction between D4Vi and poly(methylhydrosiloxane) mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. After the mixture and compactation at 80ºC (warm pressing), the samples were pyrolised at 1200 and 1400ºC and infiltred with ICZ and LZSA respectively, and thermically, physical and structurally characterized by X-ray diffraction, density and porosity, flexural mechanical strength and fracture surface by scanning electron microscopy. The yield ceramic obtained after pyrolysis for studied composition at 1200ºC was 95%. The obtained phases had been identified as being Al3Nb, NbSi2 and NbC. The composite material presented apparent porosity varying of 15 up to 32% and mechanical flexural strenght of 32 up to 37,5MPa. After the fracture surface analysis, were observed a phases homogeneous dispersion, with some domains of amorphous and crystalline aspect. The samples that were submitted the infiltration cycle presented a layer next the surface with reduced pores number in relation to the total volume