6 resultados para submovimenti, smoothness, realtà, virtuale

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The right to housing is included in several international human rights instruments and in Brazilian legal system integrates the constitutional catalog of fundamental social rights (art. 6) and urban development policy (art. 182 and 183). Besides, it is for all federative governments its effectiveness by building programs and improvement of housing conditions and sanitation (art. 23, IX), which justifies the investment in urban planning and public policy of housing affordability because they are tools for achieving this right. Newer strategies in this area have been based on tax incentives, combined with the mortgage as a way to induce the construction of new housing units or reform those in a precarious situation. However, there is still a deficit households and environmental soundness, compounded with the formation of informal settlements. Consequently, we need constant reflections on the issue, in order to identify parameters that actually guide their housing policies in order to meet the constitutional social functions of the city and ensure well-begins of its citizens (art. 182). On the other hand, the intervention of the government in this segment can not only see the availability of the home itself, but also the quality of your extension or surroundings, observing aspects related to environmental sanitation, urban mobility, leisure and services essential health, education and social assistance. It appears that the smoothness and efficiency of a housing policy condition to the concept of adequate housing, in other words, structurally safe, comfortable and environmentally legally legitimate, viable from the extensive coordination with other public policies. Only to compliance with this guideline, it is possible to realize the right to housing in sustainable cities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The so-called Dual Mode Adaptive Robust Control (DMARC) is proposed. The DMARC is a control strategy which interpolates the Model Reference Adaptive Control (MRAC) and the Variable Structure Model Reference Adaptive Control (VS-MRAC). The main idea is to incorporate the transient performance advantages of the VS-MRAC controller with the smoothness control signal in steady-state of the MRAC controller. Two basic algorithms are developed for the DMARC controller. In the first algorithm the controller's adjustment is made, in real time, through the variation of a parameter in the adaptation law. In the second algorithm the control law is generated, using fuzzy logic with Takagi-Sugeno s model, to obtain a combination of the MRAC and VS-MRAC control laws. In both cases, the combined control structure is shown to be robust to the parametric uncertainties and external disturbances, with a fast transient performance, practically without oscillations, and a smoothness steady-state control signal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent observational advances of Astronomy and a more consistent theoretical framework turned Cosmology in one of the most exciting frontiers of contemporary science. In this thesis, homogeneous and inhomogeneous Universe models containing dark matter and different kinds of dark energy are confronted with recent observational data. Initially, we analyze constraints from the existence of old high redshift objects, Supernovas type Ia and the gas mass fraction of galaxy clusters for 2 distinct classes of homogeneous and isotropic models: decaying vacuum and X(z)CDM cosmologies. By considering the quasar APM 08279+5255 at z = 3.91 with age between 2-3 Gyr, we obtain 0,2 < OM < 0,4 while for the j3 parameter which quantifies the contribution of A( t) is restricted to the intervalO, 07 < j3 < 0,32 thereby implying that the minimal age of the Universe amounts to 13.4 Gyr. A lower limit to the quasar formation redshift (zJ > 5,11) was also obtained. Our analyzes including flat, closed and hyperbolic models show that there is no an age crisis for this kind of decaying A( t) scenario. Tests from SN e Ia and gas mass fraction data were realized for flat X(z)CDM models. For an equation of state, úJ(z) = úJo + úJIZ, the best fit is úJo = -1,25, úJl = 1,3 and OM = 0,26, whereas for models with úJ(z) = úJo+úJlz/(l+z), we obtainúJo = -1,4, úJl = 2,57 and OM = 0,26. In another line of development, we have discussed the influence of the observed inhomogeneities by considering the Zeldovich-Kantowski-DyerRoeder (ZKDR) angular diameter distance. By applying the statistical X2 method to a sample of angular diameter for compact radio sources, the best fit to the cosmological parameters for XCDM models are OM = O, 26,úJ = -1,03 and a = 0,9, where úJ and a are the equation of state and the smoothness parameters, respectively. Such results are compatible with a phantom energy component (úJ < -1). The possible bidimensional spaces associated to the plane (a , OM) were restricted by using data from SNe Ia and gas mass fraction of galaxy clusters. For Supernovas the parameters are restricted to the interval 0,32 < OM < 0,5(20") and 0,32 < a < 1,0(20"), while to the gas mass fraction we find 0,18 < OM < 0,32(20") with alI alIowed values of a. For a joint analysis involving Supernovas and gas mass fraction data we obtained 0,18 < OM < 0,38(20"). In general grounds, the present study suggests that the influence of the cosmological inhomogeneities in the matter distribution need to be considered with more detail in the analyses of the observational tests. Further, the analytical treatment based on the ZKDR distance may give non-negligible corrections to the so-calIed background tests of FRW type cosmologies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The history match procedure in an oil reservoir is of paramount importance in order to obtain a characterization of the reservoir parameters (statics and dynamics) that implicates in a predict production more perfected. Throughout this process one can find reservoir model parameters which are able to reproduce the behaviour of a real reservoir.Thus, this reservoir model may be used to predict production and can aid the oil file management. During the history match procedure the reservoir model parameters are modified and for every new set of reservoir model parameters found, a fluid flow simulation is performed so that it is possible to evaluate weather or not this new set of parameters reproduces the observations in the actual reservoir. The reservoir is said to be matched when the discrepancies between the model predictions and the observations of the real reservoir are below a certain tolerance. The determination of the model parameters via history matching requires the minimisation of an objective function (difference between the observed and simulated productions according to a chosen norm) in a parameter space populated by many local minima. In other words, more than one set of reservoir model parameters fits the observation. With respect to the non-uniqueness of the solution, the inverse problem associated to history match is ill-posed. In order to reduce this ambiguity, it is necessary to incorporate a priori information and constraints in the model reservoir parameters to be determined. In this dissertation, the regularization of the inverse problem associated to the history match was performed via the introduction of a smoothness constraint in the following parameter: permeability and porosity. This constraint has geological bias of asserting that these two properties smoothly vary in space. In this sense, it is necessary to find the right relative weight of this constrain in the objective function that stabilizes the inversion and yet, introduces minimum bias. A sequential search method called COMPLEX was used to find the reservoir model parameters that best reproduce the observations of a semi-synthetic model. This method does not require the usage of derivatives when searching for the minimum of the objective function. Here, it is shown that the judicious introduction of the smoothness constraint in the objective function formulation reduces the associated ambiguity and introduces minimum bias in the estimates of permeability and porosity of the semi-synthetic reservoir model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.