1 resultado para statistical framework
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Archive of European Integration (2)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (36)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (9)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (7)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (109)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ Center for the Blue Economy - Middlebury Institute of International Studies at Monterey (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (3)
- Galway Mayo Institute of Technology, Ireland (2)
- Georgian Library Association, Georgia (2)
- Institute of Public Health in Ireland, Ireland (83)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (74)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (255)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (5)
- QSpace: Queen's University - Canada (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (19)
- Repositório da Escola Nacional de Administração Pública (ENAP) (2)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (62)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
- Universidad Politécnica de Madrid (8)
- Universidade do Minho (18)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Lausanne, Switzerland (105)
- Université de Montréal, Canada (4)
- University of Queensland eSpace - Australia (63)
- University of Washington (2)
Resumo:
This present work uses a generalized similarity measure called correntropy to develop a new method to estimate a linear relation between variables given their samples. Towards this goal, the concept of correntropy is extended from two variables to any two vectors (even with different dimensions) using a statistical framework. With this multidimensionals extensions of Correntropy the regression problem can be formulated in a different manner by seeking the hyperplane that has maximum probability density with the target data. Experiments show that the new algorithm has a nice fixed point update for the parameters and robust performs in the presence of outlier noise.