2 resultados para soluble phosphate
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The seaweed Gracilaria domingensis is a common species in the coast of Rio Grande do Norte. This species lives in the intertidal zone, where colour strains (red, green and brown) co-occur during the whole year. Seaweeds that live in this region are exposed to daily changes and to the rhythm of the tide. During the low tide they are exposed to dissection, hiper-or hipo-osmotic shock, high temperatures and high irradiance. The aim of this study was to analyze whether the pigment and protein content of the colour strains of G. domingensis is affected by some environmental parameters in a temporal scale. The seaweeds were collected during 10 months in the seashore of Rio do Fogo (RN). The total soluble proteins and the phycobiliprotein were extracted in phosphate buffer and the carotenoids were analyzed by a standardized method through HPLC-UV. The pigments analysis showed that phycoerithrin is the most abundant pigment in the three strains. This pigment was strongly correlated with nitrogen and the photosynthetically active radiation. Chlorophyll presented higher concentrations than carotenoids during the whole, but the ratio carotenoid/chlorophyll-a was modified by incident radiation. The most abundant carotenoid was ß-carotene and zeaxanthin, which had higher concentrations in the higher radiation months. The concentration increase of zeaxanthin in this period indicated a photoprotective response of the seaweed. The three strains presented a pigment profile that indicates different radiation tolerance profile. Our results pointed that the green strain is better adapted to high irradiance levels than the red and brown strains
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength