2 resultados para shore sediments
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis describes the general behavior of the northern shore of the State of Rio Grande do Norte relating beach profile morphology with hydrodynamic and sedimentological parameters. The Macau and Serra Oil Field are inserted on this area and are under accelerated coastal erosion. At these oil fields are installed oil wells from PETROBRAS, nowadays located directly in the shoreline, under constant attacks of coastal processes (e.g. waves, tides and currents), which promote an intense morphodynamic variability of this sandy coast. The area was monitored for 24 months in three different stations (P01, P02 and P03). The methodology applied involved current techniques of beach profiles, hydrodynamical processes, remote sensing and geophysics. A synthesis of results obtained through the use of different time scales (monthly, lunar cycle, seasonal, annual) from a coastal dynamics study is presented. The average wind direction corresponded to 77ºAz (NE). The steepness of the berm and of the shoreface, as well as coastal current direction, do not present major changes, with an average of 36º for the steepness of the berm, 15º for the shoreface and 15º for the coastal current direction. This data set allows us to infer that the months of larger coastal erosion were November/2000 and April/2001, because of the largest wave parameter during this time. The months of worse coastal erosion in this area are related with the increasing wavy energy. This in turn, seems to be related to seasonal climatic variations, with the wave energy and tide currents speed increasing during months of minor precipitations (June to January). The months of worse coastal erosion were September and November, when the largest wave parameters and speed currents are measured in the area. Since these months are included on the period of minor precipitations, we related the coastal erosion to seasonal climatic variations. The results obtained during these 24 months of monitoring confirms a situation of accentuated erosion, mainly in Profile 03 (Barra do Corta-Cachorro), where the wave height, period, and coastal current speed are always larger than the values found in Profile 02 (Macau5). Probably these values are more expressive in Profile 03, because it does not present any natural structure of protection against the wave impacts, as the barrier island located at Ponta do Tubarão, or the sand banks in front of Macau5. The transport of the sediments occurs from East to West, and the sand accumulation is more pronounced on Profile 03 intertidal zone, where there are embrionary dunes in dryer months. The tidal currents speed, on the other hand, is more accentuated in the Macau5 area (Profile 02). At Ponta do Tubarão, the tidal currents presented a preferential direction for NE, at times of flood, currents and for NW, at times of ebb current; at Barra do Corta-Cachorro the direction of the currents were predominantly for NW, independent of the tide phase, coinciding with the preferential direction of the longshore current. This currents inversion at Ponta do Tubarão is attributed to the presence of the Ponta do Tubarão island barrier and by the communication channel of the lagoon with the sea. The tide currents are better observed in protected areas, as in the Ponta do Tubarão, when they present inversion in their direction accordingly to the flood and ebb tide. In open areas, as in Barra do Corta-Cachorro, the tide currents are overprinted by the longshore currents. Sediment analysis does not show important modifications in grain size related to seasonality (dry- and rainy seasons). On the foreshore and backshore zones, the sediments vary from fine to medium sand, while in the shoreface they very from fine to very sands. The grains are mostly spheres, varying from sub rounded to sub angled. Quartz is the main component alongside Feldspat and heavy minerals as accessory components. Biogenic content is also present and mainly represented by mollusks fragments. The calculated sediment transport show values around 100 m3/day. The morphodynamic studies indicated that this is a reflexive area from October to April, and intermediate from May to September. The Relative Tide Range-RTR for this area is 4 < RTR < 15, and so classified in the mixed wave-tide group. Having this exposed we can affirm that the more active natural factors in this area are the currents, followed by the tides and the winds. The anthropic factors are exclusively local and punctual (Macau and Serra Oil Field). Taking in account the economic importance of the area, as well as the intensity of coastal processes acting on this shore, it is important a continuity of the monthly environmental monitoring looking for variations on longer-period cycles. These data have been stored on the geo-referenced database of the projects MARPETRO and PETRORISCO (REDE 05), aiming to model the coastal and sea environment, susceptible to oil spills and their derivatives
Resumo:
The area between Galinhos and São Bento do Norte beaches, located in the northern coast of the Rio Grande do Norte State is submitted to intense and constant processes of littoral and aeolian transport, causing erosion, alterations in the sediments balance and modifications in the shoreline. Beyond these natural factors, the human interference is huge in the surroundings due to the Guamaré Petroliferous Pole nearby, the greater terrestrial oil producing in Brazil. Before all these characteristics had been organized MAMBMARE and MARPETRO projects with the main objective to execute the geo-environmental monitoring of coastal areas on the northern portion of RN. There is a bulky amount of database from the study area such as geologic and geophysical multitemporal data, hydrodynamic measurements, remote sensing multitemporal images, thematic maps, among others; it is of extreme importance to elaborate a Geographic Database (GD), one of the main components of a Geographic Information System (GIS), to store this amount of information, allowing the access to researchers and users. The first part of this work consisted to elaborate a GD to store the data of the area between Galinhos and São Bento do Norte cities. The main goal was to use the potentiality of the GIS as a tool to support decisions in the environmental monitoring of this region, a valuable target for oil exploration, salt companies and shrimp farms. The collected data was stored as a virtual library to assist men decisions from the results presented as digital thematic maps, tables and reports, useful as source of data in the preventive planning and as guidelines to the future research themes both on regional and local context. The second stage of this work consisted on elaborate the Oil-Spill Environmental Sensitivity Maps. These maps based on the Environmental Sensitivity Index Maps to Oil Spill developed by the Ministry of Environment are cartographic products that supply full information to the decision making, contingency planning and assessment in case of an oil spilling incident in any area. They represent the sensitivity of the areas related to oil spilling, through basic data such as geology, geomorphology, oceanographic, social-economic and biology. Some parameters, as hydrodynamic data, sampling data, coastal type, declivity of the beach face, types of resources in risk (biologic, economic, human or cultural) and the land use of the area are some of the essential information used on the environmental sensitivity maps elaboration. Thus using the available data were possible to develop sensitivity maps of the study area on different dates (June/2000 and December/2000) and to perceive that there was a difference on the sensitivity index generated. The area on December presented more sensible to the oil than the June one because hydrodynamic data (wave and tide energy) allowed a faster natural cleaning on June. The use of the GIS on sensitivity maps showed to be a powerful tool, since it was possible to manipulate geographic data with correctness and to elaborate more accurate maps with a higher level of detail to the study area. This presented an medium index (3 to 4) to the long shore and a high index (10) to the mangrove areas highly vulnerable to oil spill