2 resultados para separate delivery
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis was devoted to the development of innovative oral delivery systems for two different molecules. In the first part, microparticles (MPs) based on xylan and Eudragit® S- 100 were produced and used to encapsulate 5-aminosalicylic acid for colon delivery. Xylan was extracted from corn cobs and characterized in terms of its physicochemical, rheological and toxicological properties. The polymeric MPs were prepared by interfacial cross-linking polymerization and spray-drying and characterized for their morphology, mean size and distribution, thermal stability, crystallinity, entrapment efficiency and in vitro drug release. MPs with suitable physical characteristics and satisfactory yields were prepared by both methods, although the spray-dried systems showed higher thermal stability. In general, spraydried MPs would be preferable systems due to their thermal stability and absence of toxic agents used in their preparation. However, drug loading and release need to be optimized. In the second part of this thesis, oil-in-water microemulsions (O/W MEs) based on mediumchain triglycerides were formulated as drug carriers and solubility enhancers for amphotericin B (AmB). Phase diagrams were constructed using surfactant blends with hydrophiliclipophilic balance values between 9.7 and 14.4. The drug-free and drug-loaded MEs presented spherical non-aggregated droplets around 80 and 120 nm, respectively, and a low polydispersity index. The incorporation of AmB was high and depended on the volume fraction of the disperse phase. These MEs did not reduce the viability of J774.A1 macrophage-like cells for concentrations up to 25 μg/mL of AmB. Therefore, O/W MEs based on propylene glycol esters of caprylic acid may be considered as suitable delivery systems for AmB
Resumo:
The industries of food, medicine and cosmetic apply microencapsulation for many reasons, among them, stabilize the active, control the release of encapsulated and separate incompatible components of the formulation. In this context, microencapsulation techniques have been used in the food industry to provide stable liquid and solid ingredients. Anthocyanins have high antioxidant potential, but they are photodegradable. The challenges are therefore directed to the research for techniques that could make this potential remaining active and bioavailable and could be used as a vehicle for the delivery release of bioactive and micronutrients in appropriate conditions and levels. This work has as main objective to propose a method to encapsulate the anthocyanins in the extract of mountain apple using the interfacial polymerization technique. As well as to define the ideal conditions of temperature and agitation system for this procedure. The microparticles were characterized for size, morphology, active distribution, surface charge, degradation, composition and stability. The results, like particle diameter of 5.94 μm and Zeta potential of 7.03 mV, showed that the technique used to obtain these microparticles was satisfactory and has potential for application in cosmetics and food