7 resultados para sensor nodes
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base
Resumo:
The field of Wireless Sensor and Actuator Networks (WSAN) is fast increasing and has attracted the interest of both the research community and the industry because of several factors, such as the applicability of such networks in different application domains (aviation, civil engineering, medicine, and others). Moreover, advances in wireless communication and the reduction of hardware components size also contributed for a fast spread of these networks. However, there are still several challenges and open issues that need to be tackled in order to achieve the full potential of WSAN usage. The development of WSAN systems is one of the most relevant of these challenges considering the number of variables involved in this process. Currently, a broad range of WSAN platforms and low level programming languages are available to build WSAN systems. Thus, developers need to deal with details of different sensor platforms and low-level programming abstractions of sensor operational systems on one hand, and they also need to have specific (high level) knowledge about the distinct application domains, on the other hand. Therefore, in order to decouple the handling of these two different levels of knowledge, making easier the development process of WSAN systems, we propose LWiSSy (Domain Language for Wireless Sensor and Actuator Networks Systems), a domain specific language (DSL) for WSAN. The use of DSLs raises the abstraction level during the programming of systems and modularizes the system building in several steps. Thus, LWiSSy allows the domain experts to directly contribute in the development of WSANs without having knowledge on low level sensor platforms, and network experts to program sensor nodes to meet application requirements without having specific knowledge on the application domain. Additionally, LWiSSy enables the system decomposition in different levels of abstraction according to structural and behavioral features and granularities (network, node group and single node level programming)
Resumo:
The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, covering since communication aspects to issues related with energy efficiency. When source sensors are endowed with cameras for visual monitoring, a new scope of challenges is raised, as transmission and monitoring requirements are considerably changed. Particularly, visual sensors collect data following a directional sensing model, altering the meaning of concepts as vicinity and redundancy but allowing the differentiation of source nodes by their sensing relevancies for the application. In such context, we propose the combined use of two differentiation strategies as a novel QoS parameter, exploring the sensing relevancies of source nodes and DWT image coding. This innovative approach supports a new scope of optimizations to improve the performance of visual sensor networks at the cost of a small reduction on the overall monitoring quality of the application. Besides definition of a new concept of relevance and the proposition of mechanisms to support its practical exploitation, we propose five different optimizations in the way images are transmitted in wireless visual sensor networks, aiming at energy saving, transmission with low delay and error recovery. Putting all these together, the proposed innovative differentiation strategies and the related optimizations open a relevant research trend, where the application monitoring requirements are used to guide a more efficient operation of sensor networks
Resumo:
The use of wireless sensor and actuator networks in industry has been increasing past few years, bringing multiple benefits compared to wired systems, like network flexibility and manageability. Such networks consists of a possibly large number of small and autonomous sensor and actuator devices with wireless communication capabilities. The data collected by sensors are sent directly or through intermediary nodes along the network to a base station called sink node. The data routing in this environment is an essential matter since it is strictly bounded to the energy efficiency, thus the network lifetime. This work investigates the application of a routing technique based on Reinforcement Learning s Q-Learning algorithm to a wireless sensor network by using an NS-2 simulated environment. Several metrics like energy consumption, data packet delivery rates and delays are used to validate de proposal comparing it with another solutions existing in the literature
Resumo:
Ensure the integrity of the pipeline network is an extremely important factor in the oil and gas industry. The engineering of pipelines uses sophisticated robotic inspection tools in-line known as instrumented pigs. Several relevant factors difficult the inspection of pipelines, especially in offshore field which uses pipelines with multi-diameters, radii of curvature accentuated, wall thickness of the pipe above the conventional, multi-phase flow and so on. Within this context, appeared a new instrumented Pig, called Feeler PIG, for detection and sizing of thickness loss in pipelines with internal damage. This tool was developed to overcome several limitations that other conventional instrumented pigs have during the inspection. Several factors influence the measurement errors of the pig affecting the reliability of the results. This work shows different operating conditions and provides a test rig for feeler sensors of an inspection pig under different dynamic loads. The results of measurements of the damage type of shoulder and holes in a cyclic flat surface are evaluated, as well as a mathematical model for the sensor response and their errors from the actual behavior
Resumo:
The treatment of wastewaters contaminated with oil is of great practical interest and it is fundamental in environmental issues. A relevant process, which has been studied on continuous treatment of contaminated water with oil, is the equipment denominated MDIF® (a mixer-settler based on phase inversion). An important variable during the operation of MDIF® is the water-solvent interface level in the separation section. The control of this level is essential both to avoid the dragging of the solvent during the water removal and improve the extraction efficiency of the oil by the solvent. The measurement of oil-water interface level (in line) is still a hard task. There are few sensors able to measure oil-water interface level in a reliable way. In the case of lab scale systems, there are no interface sensors with compatible dimensions. The objective of this work was to implement a level control system to the organic solvent/water interface level on the equipment MDIF®. The detection of the interface level is based on the acquisition and treatment of images obtained dynamically through a standard camera (webcam). The control strategy was developed to operate in feedback mode, where the level measure obtained by image detection is compared to the desired level and an action is taken on a control valve according to an implemented PID law. A control and data acquisition program was developed in Fortran to accomplish the following tasks: image acquisition; water-solvent interface identification; to perform decisions and send control signals; and to record data in files. Some experimental runs in open-loop were carried out using the MDIF® and random pulse disturbances were applied on the input variable (water outlet flow). The responses of interface level permitted the process identification by transfer models. From these models, the parameters for a PID controller were tuned by direct synthesis and tests in closed-loop were performed. Preliminary results for the feedback loop demonstrated that the sensor and the control strategy developed in this work were suitable for the control of organic solvent-water interface level
Resumo:
Research on Wireless Sensor Networks (WSN) has evolved, with potential applications in several domains. However, the building of WSN applications is hampered by the need of programming in low-level abstractions provided by sensor OS and of specific knowledge about each application domain and each sensor platform. We propose a MDA approach do develop WSN applications. This approach allows domain experts to directly contribute in the developing of applications without needing low level knowledge on WSN platforms and, at the same time, it allows network experts to program WSN nodes to met application requirements without specific knowledge on the application domain. Our approach also promotes the reuse of the developed software artifacts, allowing an application model to be reused across different sensor platforms and a platform model to be reused for different applications