4 resultados para senescence
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Human mesenchymal stem cells (MSC) are powerful sources for cell therapy in regenerative medicine. The long time cultivation can result in replicative senescence or can be related to the emergence of chromosomal alterations responsible for the acquisition of tumorigenesis features in vitro. In this study, for the first time, the expression profile of MSC with a paracentric chromosomal inversion (MSC/inv) was compared to normal karyotype (MSC/n) in early and late passages. Furthermore, we compared the transcriptome of each MSC in early passages with late passages. MSC used in this study were obtained from the umbilical vein of three donors, two MSC/n and one MSC/inv. After their cryopreservation, they have been expanded in vitro until reached senescence. Total RNA was extracted using the RNeasy mini kit (Qiagen) and marked with the GeneChip ® 3 IVT Express Kit (Affymetrix Inc.). Subsequently, the fragmented aRNA was hybridized on the microarranjo Affymetrix Human Genome U133 Plus 2.0 arrays (Affymetrix Inc.). The statistical analysis of differential gene expression was performed between groups MSC by the Partek Genomic Suite software, version 6.4 (Partek Inc.). Was considered statistically significant differences in expression to p-value Bonferroni correction ˂.01. Only signals with fold change ˃ 3.0 were included in the list of differentially expressed. Differences in gene expression data obtained from microarrays were confirmed by Real Time RT-PCR. For the interpretation of biological expression data were used: IPA (Ingenuity Systems) for analysis enrichment functions, the STRING 9.0 for construction of network interactions; Cytoscape 2.8 to the network visualization and analysis bottlenecks with the aid of the GraphPad Prism 5.0 software. BiNGO Cytoscape pluggin was used to access overrepresentation of Gene Ontology categories in Biological Networks. The comparison between senescent and young at each group of MSC has shown that there is a difference in the expression parttern, being higher in the senescent MSC/inv group. The results also showed difference in expression profiles between the MSC/inv versus MSC/n, being greater when they are senescent. New networks were identified for genes related to the response of two of MSC over cultivation time. Were also identified genes that can coordinate functional categories over represented at networks, such as CXCL12, SFRP1, xvi EGF, SPP1, MMP1 e THBS1. The biological interpretation of these data suggests that the population of MSC/inv has different constitutional characteristics, related to their potential for differentiation, proliferation and response to stimuli, responsible for a distinct process of replicative senescence in MSC/inv compared to MSC/n. The genes identified in this study are candidates for biomarkers of cellular senescence in MSC, but their functional relevance in this process should be evaluated in additional in vitro and/or in vivo assays
Resumo:
The production of forage grasses is directly related to the morphogenesis. The knowledge of the morphogenetic and structural variables of forage plants is important for determining appropriate conditions of grazing livestock to ensure efficient and sustainable. Thus the objective of this study was to evaluate morphogenetic and structural responses of three genera of grasses, Brachiaria, Panicum and Cenchrus in a cutting regime. The experimental design was randomized blocks with three replications and six treatments. After each section were evaluated for forage production, appearance and elongation rates of leaves and stem, phyllochron, final leaf length, number of living leaves, leaf lifespan, leaf senescence rate, tiller density and tiller dynamics. On forage yield the highest values were obtained in cultivars Xaraes, Piata and Massai. The tiller density was higher for cv Massai. It is concluded that the cultivars of Panicum and Brachiaria had a higher tillering dynamics in increasing the turnover rate of tissues that are indicators of forage production, assuming that the cultivars of these genera are predisposed to use forage in the Northeast
Resumo:
The circadian timing system (CTS), in rodents, consists of interconnected neural structures such as the suprachiasmatic nucleus (SCN) of the hypothalamus, Intergeniculate Leaflet (IGL) of the thalamus, synchronous pathways and behavioral effectors. The SCN has been described as the major circadian pacemaker in several species of mammals, while the IGL appears to be involved in integration of photic and non-photic clues relaying them to SCN. The CTS allows an ordered internal temporal organization to the organism, providing the proper execution of physiological and behavioral mechanisms, which brings homeostasis. However, this stability is disrupted with aging process causing numerous pathological disorders, ranging from simple loss of physiological functions to decreases in cognitive performance. Therefore, is fundamental understanding the effects of senescence in this system. In this context, is proposed in this study to check if there are changes in IGL cytoarchitecture, neurochemical and retinal afferent markers with aging and their possible morpho-functional implications. To achieve this goal wistar rats were divided into 3 groups: young (3 months); Middle Age (13 months); Old (23 months). They were submitted to paraformaldhyde (4%) transcardiac perfusion to tissue fixation. Then, they had their brain removed and sectioned in 30 µm slices, which every sixth section were collected. This sections were processed by nissl method and immunostaining for GFAP, GAD, ENK, NPY and CTb in order to analyze the IGL features. It was observed a cell loss in middle age and old animals at Nissl, NPY and CTb stains. In addition, it was shown a increase in GFAP in middle aged animals compared to young and old ones. No differences were found in other neurochemichal stains. These data suggests IGL loss retinal afferents and neurons, in special the NPY-IR ones, likely having a compensatory gliogenesis. This supports the correlations between the CTS functional deficits and an anatomical deterioration of its components with the aging process.
Resumo:
Human mesenchymal stem cells (MSC) are powerful sources for cell therapy in regenerative medicine. The long time cultivation can result in replicative senescence or can be related to the emergence of chromosomal alterations responsible for the acquisition of tumorigenesis features in vitro. In this study, for the first time, the expression profile of MSC with a paracentric chromosomal inversion (MSC/inv) was compared to normal karyotype (MSC/n) in early and late passages. Furthermore, we compared the transcriptome of each MSC in early passages with late passages. MSC used in this study were obtained from the umbilical vein of three donors, two MSC/n and one MSC/inv. After their cryopreservation, they have been expanded in vitro until reached senescence. Total RNA was extracted using the RNeasy mini kit (Qiagen) and marked with the GeneChip ® 3 IVT Express Kit (Affymetrix Inc.). Subsequently, the fragmented aRNA was hybridized on the microarranjo Affymetrix Human Genome U133 Plus 2.0 arrays (Affymetrix Inc.). The statistical analysis of differential gene expression was performed between groups MSC by the Partek Genomic Suite software, version 6.4 (Partek Inc.). Was considered statistically significant differences in expression to p-value Bonferroni correction ˂.01. Only signals with fold change ˃ 3.0 were included in the list of differentially expressed. Differences in gene expression data obtained from microarrays were confirmed by Real Time RT-PCR. For the interpretation of biological expression data were used: IPA (Ingenuity Systems) for analysis enrichment functions, the STRING 9.0 for construction of network interactions; Cytoscape 2.8 to the network visualization and analysis bottlenecks with the aid of the GraphPad Prism 5.0 software. BiNGO Cytoscape pluggin was used to access overrepresentation of Gene Ontology categories in Biological Networks. The comparison between senescent and young at each group of MSC has shown that there is a difference in the expression parttern, being higher in the senescent MSC/inv group. The results also showed difference in expression profiles between the MSC/inv versus MSC/n, being greater when they are senescent. New networks were identified for genes related to the response of two of MSC over cultivation time. Were also identified genes that can coordinate functional categories over represented at networks, such as CXCL12, SFRP1, xvi EGF, SPP1, MMP1 e THBS1. The biological interpretation of these data suggests that the population of MSC/inv has different constitutional characteristics, related to their potential for differentiation, proliferation and response to stimuli, responsible for a distinct process of replicative senescence in MSC/inv compared to MSC/n. The genes identified in this study are candidates for biomarkers of cellular senescence in MSC, but their functional relevance in this process should be evaluated in additional in vitro and/or in vivo assays