2 resultados para semigroup of bounded linear operators
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
We investigate the cosmology of the vacuum energy decaying into cold dark matter according to thermodynamics description of Alcaniz & Lima. We apply this model to analyze the evolution of primordial density perturbations in the matter that gave rise to the first generation of structures bounded by gravity in the Universe, called Population III Objects. The analysis of the dynamics of those systems will involve the calculation of a differential equation system governing the evolution of perturbations to the case of two coupled fluids (dark matter and baryonic matter), modeled with a Top-Hat profile based in the perturbation of the hydrodynamics equations, an efficient analytical tool to study the properties of dark energy models such as the behavior of the linear growth factor and the linear growth index, physical quantities closely related to the fields of peculiar velocities at any time, for different models of dark energy. The properties and the dynamics of current Universe are analyzed through the exact analytical form of the linear growth factor of density fluctuations, taking into account the influence of several physical cooling mechanisms acting on the density fluctuations of the baryonic component of matter during the evolution of the clouds of matter, studied from the primordial hydrogen recombination. This study is naturally extended to more general models of dark energy with constant equation of state parameter in a flat Universe
Resumo:
In general, an inverse problem corresponds to find a value of an element x in a suitable vector space, given a vector y measuring it, in some sense. When we discretize the problem, it usually boils down to solve an equation system f(x) = y, where f : U Rm ! Rn represents the step function in any domain U of the appropriate Rm. As a general rule, we arrive to an ill-posed problem. The resolution of inverse problems has been widely researched along the last decades, because many problems in science and industry consist in determining unknowns that we try to know, by observing its effects under certain indirect measures. Our general subject of this dissertation is the choice of Tykhonov´s regulaziration parameter of a poorly conditioned linear problem, as we are going to discuss on chapter 1 of this dissertation, focusing on the three most popular methods in nowadays literature of the area. Our more specific focus in this dissertation consists in the simulations reported on chapter 2, aiming to compare the performance of the three methods in the recuperation of images measured with the Radon transform, perturbed by the addition of gaussian i.i.d. noise. We choosed a difference operator as regularizer of the problem. The contribution we try to make, in this dissertation, mainly consists on the discussion of numerical simulations we execute, as is exposed in Chapter 2. We understand that the meaning of this dissertation lays much more on the questions which it raises than on saying something definitive about the subject. Partly, for beeing based on numerical experiments with no new mathematical results associated to it, partly for being about numerical experiments made with a single operator. On the other hand, we got some observations which seemed to us interesting on the simulations performed, considered the literature of the area. In special, we highlight observations we resume, at the conclusion of this work, about the different vocations of methods like GCV and L-curve and, also, about the optimal parameters tendency observed in the L-curve method of grouping themselves in a small gap, strongly correlated with the behavior of the generalized singular value decomposition curve of the involved operators, under reasonably broad regularity conditions in the images to be recovered