24 resultados para scalability
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Sleep has emerged in the past decades as a key process for memory consolidation and restructuring. Given the universality of sleep across cultures, the need to reduce educational inequality, the low implementation cost of a sleep-based pedagogy, and its global scalability, it is surprising that the potential of improved sleep as a means of enhancing school education has remained largely unexploited. Students of various socio-economic status often suffer from sleep deficits. In principle, the optimization of sleep schedules both before and after classes should produce large positive benefits for learning. Here we review the biological and psychological phenomena underlying the cognitive role of sleep, present the few published studies on sleep and learning that have been performed in schools, and discuss potential applications of sleep to the school setting. Translational research on sleep and learning has never seemed more appropriate.
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
In this work, we propose a solution to solve the scalability problem found in collaborative, virtual and mixed reality environments of large scale, that use the hierarchical client-server model. Basically, we use a hierarchy of servers. When the capacity of a server is reached, a new server is created as a sun of the first one, and the system load is distributed between them (father and sun). We propose efficient tools and techniques for solving problems inherent to client-server model, as the definition of clusters of users, distribution and redistribution of users through the servers, and some mixing and filtering operations, that are necessary to reduce flow between servers. The new model was tested, in simulation, emulation and in interactive applications that were implemented. The results of these experimentations show enhancements in the traditional, previous models indicating the usability of the proposed in problems of all-to-all communications. This is the case of interactive games and other applications devoted to Internet (including multi-user environments) and interactive applications of the Brazilian Digital Television System, to be developed by the research group. Keywords: large scale virtual environments, interactive digital tv, distributed
Resumo:
Internet applications such as media streaming, collaborative computing and massive multiplayer are on the rise,. This leads to the need for multicast communication, but unfortunately group communications support based on IP multicast has not been widely adopted due to a combination of technical and non-technical problems. Therefore, a number of different application-layer multicast schemes have been proposed in recent literature to overcome the drawbacks. In addition, these applications often behave as both providers and clients of services, being called peer-topeer applications, and where participants come and go very dynamically. Thus, servercentric architectures for membership management have well-known problems related to scalability and fault-tolerance, and even peer-to-peer traditional solutions need to have some mechanism that takes into account member's volatility. The idea of location awareness distributes the participants in the overlay network according to their proximity in the underlying network allowing a better performance. Given this context, this thesis proposes an application layer multicast protocol, called LAALM, which takes into account the actual network topology in the assembly process of the overlay network. The membership algorithm uses a new metric, IPXY, to provide location awareness through the processing of local information, and it was implemented using a distributed shared and bi-directional tree. The algorithm also has a sub-optimal heuristic to minimize the cost of membership process. The protocol has been evaluated in two ways. First, through an own simulator developed in this work, where we evaluated the quality of distribution tree by metrics such as outdegree and path length. Second, reallife scenarios were built in the ns-3 network simulator where we evaluated the network protocol performance by metrics such as stress, stretch, time to first packet and reconfiguration group time
Resumo:
There are some approaches that take advantage of unused computational resources in the Internet nodes - users´ machines. In the last years , the peer-to-peer networks (P2P) have gaining a momentum mainly due to its support for scalability and fault tolerance. However, current P2P architectures present some problems such as nodes overhead due to messages routing, a great amount of nodes reconfigurations when the network topology changes, routing traffic inside a specific network even when the traffic is not directed to a machine of this network, and the lack of a proximity relationship among the P2P nodes and the proximity of these nodes in the IP network. Although some architectures use the information about the nodes distance in the IP network, they use methods that require dynamic information. In this work we propose a P2P architecture to fix the problems afore mentioned. It is composed of three parts. The first part consists of a basic P2P architecture, called SGrid, which maintains a relationship of nodes in the P2P network with their position in the IP network. Its assigns adjacent key regions to nodes of a same organization. The second part is a protocol called NATal (Routing and NAT application layer) that extends the basic architecture in order to remove from the nodes the responsibility of routing messages. The third part consists of a special kind of node, called LSP (Lightware Super-Peer), which is responsible for maintaining the P2P routing table. In addition, this work also presents a simulator that validates the architecture and a module of the Natal protocol to be used in Linux routers
Resumo:
Due to the current need of the industry to integrate data of the beginning of production originating from of several sources and of transforming them in useful information for sockets of decisions, a search exists every time larger for systems of visualization of information that come to collaborate with that functionality. On the other hand, a common practice nowadays, due to the high competitiveness of the market, it is the development of industrial systems that possess characteristics of modularity, distribution, flexibility, scalability, adaptation, interoperability, reusability and access through web. Those characteristics provide an extra agility and a larger easiness in adapting to the frequent changes of demand of the market. Based on the arguments exposed above, this work consists of specifying a component-based architecture, with the respective development of a system based on that architecture, for the visualization of industrial data. The system was conceived to be capable to supply on-line information and, optionally, historical information of variables originating from of the beginning of production. In this work it is shown that the component-based architecture developed possesses the necessary requirements for the obtaining of a system robust, reliable and of easy maintenance, being, like this, in agreement with the industrial needs. The use of that architecture allows although components can be added, removed or updated in time of execution, through a manager of components through web, still activating more the adaptation process and updating of the system
Resumo:
Ensuring the dependability requirements is essential for the industrial applications since faults may cause failures whose consequences result in economic losses, environmental damage or hurting people. Therefore, faced from the relevance of topic, this thesis proposes a methodology for the dependability evaluation of industrial wireless networks (WirelessHART, ISA100.11a, WIA-PA) on early design phase. However, the proposal can be easily adapted to maintenance and expansion stages of network. The proposal uses graph theory and fault tree formalism to create automatically an analytical model from a given wireless industrial network topology, where the dependability can be evaluated. The evaluation metrics supported are the reliability, availability, MTTF (mean time to failure), importance measures of devices, redundancy aspects and common cause failures. It must be emphasized that the proposal is independent of any tool to evaluate quantitatively the target metrics. However, due to validation issues it was used a tool widely accepted on academy for this purpose (SHARPE). In addition, an algorithm to generate the minimal cut sets, originally applied on graph theory, was adapted to fault tree formalism to guarantee the scalability of methodology in wireless industrial network environments (< 100 devices). Finally, the proposed methodology was validate from typical scenarios found in industrial environments, as star, line, cluster and mesh topologies. It was also evaluated scenarios with common cause failures and best practices to guide the design of an industrial wireless network. For guarantee scalability requirements, it was analyzed the performance of methodology in different scenarios where the results shown the applicability of proposal for networks typically found in industrial environments
Resumo:
The last years have presented an increase in the acceptance and adoption of the parallel processing, as much for scientific computation of high performance as for applications of general intention. This acceptance has been favored mainly for the development of environments with massive parallel processing (MPP - Massively Parallel Processing) and of the distributed computation. A common point between distributed systems and MPPs architectures is the notion of message exchange, that allows the communication between processes. An environment of message exchange consists basically of a communication library that, acting as an extension of the programming languages that allow to the elaboration of applications parallel, such as C, C++ and Fortran. In the development of applications parallel, a basic aspect is on to the analysis of performance of the same ones. Several can be the metric ones used in this analysis: time of execution, efficiency in the use of the processing elements, scalability of the application with respect to the increase in the number of processors or to the increase of the instance of the treat problem. The establishment of models or mechanisms that allow this analysis can be a task sufficiently complicated considering parameters and involved degrees of freedom in the implementation of the parallel application. An joined alternative has been the use of collection tools and visualization of performance data, that allow the user to identify to points of strangulation and sources of inefficiency in an application. For an efficient visualization one becomes necessary to identify and to collect given relative to the execution of the application, stage this called instrumentation. In this work it is presented, initially, a study of the main techniques used in the collection of the performance data, and after that a detailed analysis of the main available tools is made that can be used in architectures parallel of the type to cluster Beowulf with Linux on X86 platform being used libraries of communication based in applications MPI - Message Passing Interface, such as LAM and MPICH. This analysis is validated on applications parallel bars that deal with the problems of the training of neural nets of the type perceptrons using retro-propagation. The gotten conclusions show to the potentiality and easinesses of the analyzed tools.
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections
Resumo:
The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors
Resumo:
This paper analyzes the performance of a parallel implementation of Coupled Simulated Annealing (CSA) for the unconstrained optimization of continuous variables problems. Parallel processing is an efficient form of information processing with emphasis on exploration of simultaneous events in the execution of software. It arises primarily due to high computational performance demands, and the difficulty in increasing the speed of a single processing core. Despite multicore processors being easily found nowadays, several algorithms are not yet suitable for running on parallel architectures. The algorithm is characterized by a group of Simulated Annealing (SA) optimizers working together on refining the solution. Each SA optimizer runs on a single thread executed by different processors. In the analysis of parallel performance and scalability, these metrics were investigated: the execution time; the speedup of the algorithm with respect to increasing the number of processors; and the efficient use of processing elements with respect to the increasing size of the treated problem. Furthermore, the quality of the final solution was verified. For the study, this paper proposes a parallel version of CSA and its equivalent serial version. Both algorithms were analysed on 14 benchmark functions. For each of these functions, the CSA is evaluated using 2-24 optimizers. The results obtained are shown and discussed observing the analysis of the metrics. The conclusions of the paper characterize the CSA as a good parallel algorithm, both in the quality of the solutions and the parallel scalability and parallel efficiency
Resumo:
This work presents a scalable and efficient parallel implementation of the Standard Simplex algorithm in the multicore architecture to solve large scale linear programming problems. We present a general scheme explaining how each step of the standard Simplex algorithm was parallelized, indicating some important points of the parallel implementation. Performance analysis were conducted by comparing the sequential time using the Simplex tableau and the Simplex of the CPLEXR IBM. The experiments were executed on a shared memory machine with 24 cores. The scalability analysis was performed with problems of different dimensions, finding evidence that our parallel standard Simplex algorithm has a better parallel efficiency for problems with more variables than constraints. In comparison with CPLEXR , the proposed parallel algorithm achieved a efficiency of up to 16 times better
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform