24 resultados para rotational viscometer
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
ARAUJO, Márcio V. ; ALSINA, Pablo J. ; MEDEIROS, Adelardo A. D. ; PEREIRA, Jonathan P.P. ; DOMINGOS, Elber C. ; ARAÚJO, Fábio M.U. ; SILVA, Jáder S. . Development of an Active Orthosis Prototype for Lower Limbs. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 20., 2009, Gramado, RS. Proceedings… Gramado, RS: [s. n.], 2009
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
This work describes the study and the implementation of the vector speed control for a three-phase Bearingless induction machine with divided winding of 4 poles and 1,1 kW using the neural rotor flux estimation. The vector speed control operates together with the radial positioning controllers and with the winding currents controllers of the stator phases. For the radial positioning, the forces controlled by the internal machine magnetic fields are used. For the radial forces optimization , a special rotor winding with independent circuits which allows a low rotational torque influence was used. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed and radial positioning controllers to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The DSP resources used by the system are: the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000
Resumo:
This work presents the development of a prototype of an intelligent active orthosis for lower limbs whit an electronic embedded system. The proposed orthosis is an orthopedical device with the main objective of providing walking capacity to people with partial or total loss of lower limbs movements. In order to design the kinematics, dynamics and the mechanical characteristics of the prototype, the biomechanics of the human body was analized. The orthosis was projected to reproduce some of the movements of the human gait as walking in straight forward, sit down, get up, arise and go down steps. The joints of the orthosis are controlled by DC motors equipped with mechanical reductions, whose purpose is to reduce rotational speed and increase the torque, thus generating smooth movements. The electronic embedded system is composed of two motor controller boards with two channels that communicate with a embedded PC, position sensors and limit switches. The gait movements of the orthosis will be controlled by high level commands from a human-machine interface. The embedded electronic system interprets the high level commands, generates the angular references for the joints of the orthosis, controls and drives the actuators in order to execute the desired movements of the user
Resumo:
Quadrotors aircraft are composed by four propellers mounted on four engines on a cross or x disposition, and, in this structure, the engines on the same arm spin in the same direction and the other arm in the opposite direction. By rotating each helix generates vertical upward thrust. The control is done by varying the rotational speed of each motor. Among the advantages of this type of vehicle can cite the mechanical simplicity of construction, the high degree of maneuverability and the ability to have vertical takeoffs and landings. The modeling and control of quadrirrotores have been a challenge due to problems such as nonlinearity and coupling between variables. Several strategies have been developed to control this type of vehicle, from the classical control to modern. There are air surveillance applications where a camera is fixed on the vehicle to point forward, where it is desired that the quadrotor moves at a fixed altitude toward the target also pointing forward, which imposes an artificial constraint motion, because it is not desired that it moves laterally, but only forwards or backwards and around its axes . This restriction is similar to the naturally existing on robots powered by wheels with differential drive, which also can not move laterally, due to the friction of the wheels. Therefore, a position control strategy similar to that used in this type of robot could be adapted for aerial robots like quadrotor. This dissertation presents and discusses some strategies for the control of position and orientation of quadrotors found in the literature and proposes a strategy based on dynamic control of mobile robots with differential drive, called the variable reference control. The validity of the proposed strategy is demonstrated through computer simulations
Resumo:
The present work consists in the analysis of tribologycal properties of basic and multifunctional knitted fabrics. This knowledge has fundamental importance for the textile industry since it can quantify, in an objective way, the tactil. The fabrics used were characterized by friction and mechanical tests for determining the viscoelastic region, wear resistance and friction coefficient of the fabrics used. The stress-strain curve was obtained by the method Kawabata, KES-FB1. Wear tests performed with the aid of equipment Martindale. The measurement of friction coefficient, two methods were used and analyzed comparatively. The first was a method already established worldwide known as KES-FB4 and the second was an innovative method called FRICTORQ, developed by the University of Minho. These two methods were compared taking into account the relative motion between the tribologycal pairs are different from each method. While the first motion is translational, the second is rotational. It was formal that the knitted had a multifunctional fabrics tribologycal performance which was better than the basic knitted fabrics, as the viscoelastic region, was laager highlighting a multifunctional structure, with greater wear resistance mainly on the back side of the knitted fabrics and lower friction coefficient. Performing a comparative analysis between two methods used to measure the friction coefficient, it was formal that both methods were consistent in terms of results. In operational terms, the FRICTORQ showed ease of operation and increased reproducibility of results
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
In the past 50 years, large efforts have been made toward the understanding of the stellar evolution. In the observational context, large sets of precise measurements of projected rotational velocity were produced, in particular by the Natal and Geneva groups. From these data, it is now possible to establish the behavior of stellar rotation from the turnoff to the red giant branch. In addition, these data have shown the role of tidal effects on stellar rotation in close binary systems. Nevertheless, relatively little attention has been paid to theoretical studies on the evolution of rotation along the HR Diagram, a topic itself directly associated to the evolution of the stars. Basically, there are two reasons for such a fact, (i) spherical symmetry is not assumed, what leads to a substantial increase in the numerical complexity of equations and (ii) non rotating models have been very successful in explaining relevant observational data, including the mass-luminosity relation and chemical abundances. In spite of these facts, it is clear that considerable work remains to be done on the role of rotation in the later stages of the evolution, where clear disagreements arise from confrontations between theoretical predictions and observations. In the present work we study the evolutionary behavior of stellar rotation along the HR Diagram, taking into account constraint conditions issued from recent observational survey of rotational velocity carried out with high precision procedures and new evolutionary codes
Resumo:
In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the effect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin
Resumo:
Important advances have been made along the last decade in the study of the lithium behavior in solar-type stars. Among the most important discoveries what attracts attention is that the distribution of lithium abundance in the late F-type giant stars tends to be discontinuous, at the same time of a sudden decline in rotation and a gradual decline according to the temperature for giant red stars of such spectral type. Other studies have also shown that synchronized binary systems with evolved components seem to keep more of their original lithium than the unsynchronized systems. evertheless, the connection between rotation and lithium abundance as well as the role of tidal effects on lithium dilution seem to be more complicated matters, depending on mass, metallicity and age. This work brings an unprecedented study about the behavior of lithium abundance in solartype evolved stars based on an unique sample of 1067 subgiant, giant and supergiant stars, 236 of them presenting spectroscopic binary characteristics, with precise lithium abundance and projected rotational speed. Now the lithium-rotation connection for single and binary evolved stars is analyzed taking into account the role of mass and stellar age
Resumo:
In the present work we use a Tsallis maximum entropy distribution law to fit the observations of projected rotational velocity measurements of stars in the Pleiades open cluster. This new distribution funtion which generalizes the Ma.xwel1-Boltzmann one is derived from the non-extensivity of the Boltzmann-Gibbs entropy. We also present a oomparison between results from the generalized distribution and the Ma.xwellia.n law, and show that the generalized distribution fits more closely the observational data. In addition, we present a oomparison between the q values of the generalized distribution determined for the V sin i distribution of the main sequence stars (Pleiades) and ones found for the observed distribution of evolved stars (subgiants). We then observe a correlation between the q values and the star evolution stage for a certain range of stel1ar mass
Resumo:
In this Thesis, we analyzed the formation of maxwellian tails of the distributions of the rotational velocity in the context of the out of equilibrium Boltzmann Gibbs statistical mechanics. We start from a unified model for the angular momentum loss rate which made possible the construction of a general theory for the rotational decay in the which, finally, through the compilation between standard Maxwellian and the relation of rotational decay, we defined the (_, _) Maxwellian distributions. The results reveal that the out of equilibrium Boltzmann Gibbs statistics supplies us results as good as the one of the Tsallis and Kaniadakis generalized statistics, besides allowing fittings controlled by physical properties extracted of the own theory of stellar rotation. In addition, our results point out that these generalized statistics converge to the one of Boltzmann Gibbs when we inserted, in your respective functions of distributions, a rotational velocity defined as a distribution
Resumo:
One of the best established properties of the single late type evolved stars is that their rotational velocity and lithium content decrease with effective temperature and age. Nevertheless, the root cause of this property, as well as the link between rotation and lithium abundance and, in particular, the effects of binarity on rotation and lithium content in binary systems with evolved component, are not yet completely established. How does the gravitational tides, in binary systems, affects rotational evolution and lithium dilution? Trying to answer these questions, we have carried out an observational survey, in the lithium region centered at the lithium I line A6707.81A, for a large sample of about 100 binary systems with evolved component along the spectral range F, G and K, with the CES spectrometer mounted at the CAT 1.44 m Telescope of the ESO, La Silla, Chile. By combining the abundances of lithium issued from these observations with rotational velocity and orbital parameters, we have found a number of important results. First of all, we confirm that in this class of binary systems rotation is effectively affected by tidal effects. Binary systems with orbital period lower than about 100 days and circular or nearly circular orbits, present rotational velocity enhanced in relation to the single giant stars and to the binary systems with an orbital period larger than 100 days. This is clearly the result of the synchonization between the rotational and orbital motions due to tidal effects. In addition, we have found that lithium abundances in binary systems with giant components present the same gradual decreasing with effective temperature, observed in the single giants of same luminosity class and spectral types. We have found no lithium-rich binary systems, in contrast with single giants. A remarkable result from the present study is the one showing that synchronized binary systems with giant component retains more of their original lithium than the unsynchronized systems. In fact, we have found a possible "inhibited zone", in which synchronized binary systems with giant component having lithium abundance lower than a threshold level should be unusual. Finally, the present study also shows that the binary systems with giant component presenting the highest lithium contents are those with the highest rotation rates
Resumo:
The study physical process that control the stellar evolution is strength influenced by several stellar parameters, like as rotational velocity, convective envelope mass deepening, and magnetic field intensity. In this study we analyzed the interconnection of some stellar parameters, as Lithium abundance A(Li), chromospheric activity and magnetic field intensity as well as the variation of these parameters as a function of age, rotational velocity, and the convective envelope mass deepening for a selected sample of solar analogs and twins stars. In particular, we analyzed the convective envelope mass deepening and the dispersion of lithium abundance for these stars. We also studied the evolution of rotation in subgiants stars, because its belong to the following evolutionary stage of solar analogs, and twins stars. For this analyze, we compute evolutionary models with the TGEC code to derive the evolutionary stage, as well as the convective envelope mass deepening, and derive more precisely the stellar mass, and age for this 118 stars. Our Investigation shows a considerable dispersion of lithium abundance for the solar analogs stars. We also realize that this dispersion is not by the convective zone deep, in this way we observed which the scattering of A(Li) can not be explained by classical theories of mixing in the convective zone. In conclusion we have that are necessary extra-mixing process to explain this decrease of Lithium abundance in solar analogs and twins stars. We analyzed the subgiant stars because this are the subsequent evolutionary stage after the solar analogs and twins stars. For this analysis, we compute the rotational period for 30 subgiants stars observed by Co- RoT satellite. For this task we apply two different methods: Lomb-Scargle algorithm, and the Plavchan Periodogram. We apply the TGEC code we compute models with internal distribution of angular momentum to confront the predict results with the models, and the observational results. With this analyze, we showed which solid body rotation models are incompatible with the physical interpretation of observational results. As a result of our study we still concluded that the magnetic field, convective envelope mass deepening, and internal redistribution of angular momentum are essential to explain the evolution of low-mass stars, and its observational characteristics. Based on population synthesis simulation, we concluded that the solar neighborhood presents a considerable quantity of solar twins when compared with the discovered set nowadays. Altogether we foresee the existence around 400 solar analogs in the solar neighborhood (distance of 100 pc). We also study the angular momentum of solar analogs and twins, in this study we concluded that added angular momentum from a Jupiter type planet, putted in the Jupiter position, is not enough to explain the angular momentum predicted by Kraft law (Kraft 1970)