14 resultados para residual gas analysis
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study
Resumo:
With the new discoveries of oil and gas, the exploration of fields in various geological basins, imports of other oils and the development of alternative fuels, more and more research labs have evaluated and characterized new types of petroleum and derivatives. Therefore the investment in new techniques and equipment in the samples analysis to determine their physical and chemical properties, their composition, possible contaminants, especification of products, among others, have multiplied in last years, so development of techniques for rapid and efficient characterization is extremely important for a better economic recovery of oil. Based on this context, this work has two main objectives. The first one is to characterize the oil by thermogravimetry coupled with mass spectrometry (TG-MS), and correlate these results with from other types of characterizations data previously informed. The second is to use the technique to develop a methodology to obtain the curve of evaluation of hydrogen sulfide gas in oil. Thus, four samples were analyzed by TG-MS, and X-ray fluorescence spectrometry (XRF). TG results can be used to indicate the nature of oil, its tendency in coke formation, temperatures of distillation and cracking, and other features. It was observed in MS evaluations the behavior of oil main compounds with temperature, the points where the volatilized certain fractions and the evaluation gas analysis of sulfide hydrogen that is compared with the evaluation curve obtained by Petrobras with another methodology
Resumo:
This work intends to analyze the behavior of the gas flow of plunger lift wells producing to well testing separators in offshore production platforms to aim a technical procedure to estimate the gas flow during the slug production period. The motivation for this work appeared from the expectation of some wells equipped with plunger lift method by PETROBRAS in Ubarana sea field located at Rio Grande do Norte State coast where the produced fluids measurement is made in well testing separators at the platform. The oil artificial lift method called plunger lift is used when the available energy of the reservoir is not high enough to overcome all the necessary load losses to lift the oil from the bottom of the well to the surface continuously. This method consists, basically, in one free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well s lifting efficiency. A pneumatic control valve is mounted at the flow line to control the cycles. When this valve opens, the plunger starts to move from the bottom to the surface of the well lifting all the oil and gas that are above it until to reach the well test separator where the fluids are measured. The well test separator is used to measure all the volumes produced by the well during a certain period of time called production test. In most cases, the separators are designed to measure stabilized flow, in other words, reasonably constant flow by the use of level and pressure electronic controllers (PLC) and by assumption of a steady pressure inside the separator. With plunger lift wells the liquid and gas flow at the surface are cyclical and unstable what causes the appearance of slugs inside the separator, mainly in the gas phase, because introduce significant errors in the measurement system (e.g.: overrange error). The flow gas analysis proposed in this work is based on two mathematical models used together: i) a plunger lift well model proposed by Baruzzi [1] with later modifications made by Bolonhini [2] to built a plunger lift simulator; ii) a two-phase separator model (gas + liquid) based from a three-phase separator model (gas + oil + water) proposed by Nunes [3]. Based on the models above and with field data collected from the well test separator of PUB-02 platform (Ubarana sea field) it was possible to demonstrate that the output gas flow of the separator can be estimate, with a reasonable precision, from the control signal of the Pressure Control Valve (PCV). Several models of the System Identification Toolbox from MATLAB® were analyzed to evaluate which one better fit to the data collected from the field. For validation of the models, it was used the AIC criterion, as well as a variant of the cross validation criterion. The ARX model performance was the best one to fit to the data and, this way, we decided to evaluate a recursive algorithm (RARX) also with real time data. The results were quite promising that indicating the viability to estimate the output gas flow rate from a plunger lift well producing to a well test separator, with the built-in information of the control signal to the PCV
Resumo:
With the new discoveries of oil and gas, the exploration of fields in various geological basins, imports of other oils and the development of alternative fuels, more and more research labs have evaluated and characterized new types of petroleum and derivatives. Therefore the investment in new techniques and equipment in the samples analysis to determine their physical and chemical properties, their composition, possible contaminants, especification of products, among others, have multiplied in last years, so development of techniques for rapid and efficient characterization is extremely important for a better economic recovery of oil. Based on this context, this work has two main objectives. The first one is to characterize the oil by thermogravimetry coupled with mass spectrometry (TG-MS), and correlate these results with from other types of characterizations data previously informed. The second is to use the technique to develop a methodology to obtain the curve of evaluation of hydrogen sulfide gas in oil. Thus, four samples were analyzed by TG-MS, and X-ray fluorescence spectrometry (XRF). TG results can be used to indicate the nature of oil, its tendency in coke formation, temperatures of distillation and cracking, and other features. It was observed in MS evaluations the behavior of oil main compounds with temperature, the points where the volatilized certain fractions and the evaluation gas analysis of sulfide hydrogen that is compared with the evaluation curve obtained by Petrobras with another methodology
Resumo:
With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state
Resumo:
Electrical resistive heating (ERH) is a thermal method used to improve oil recovery. It can increase oil rate and oil recovery due to temperature increase caused by electrical current passage through oil zone. ERH has some advantage compared with well-known thermal methods such as continuous steam flood, presenting low-water production. This method can be applied to reservoirs with different characteristics and initial reservoir conditions. Commercial software was used to test several cases using a semi-synthetic homogeneous reservoir with some characteristics as found in northeast Brazilian basins. It was realized a sensitivity analysis of some reservoir parameters, such as: oil zone, aquifer presence, gas cap presence and oil saturation on oil recovery and energy consumption. Then it was tested several cases studying the electrical variables considered more important in the process, such as: voltage, electrical configurations and electrodes positions. Energy optimization by electrodes voltage levels changes and electrical settings modify the intensity and the electrical current distribution in oil zone and, consequently, their influences in reservoir temperature reached at some regions. Results show which reservoir parameters were significant in order to improve oil recovery and energy requirement in for each reservoir. Most significant parameters on oil recovery and electrical energy delivered were oil thickness, presence of aquifer, presence of gas cap, voltage, electrical configuration and electrodes positions. Factors such as: connate water, water salinity and relative permeability to water at irreducible oil saturation had low influence on oil recovery but had some influence in energy requirements. It was possible to optimize energy consumption and oil recovery by electrical variables. Energy requirements can decrease by changing electrodes voltages during the process. This application can be extended to heavy oil reservoirs of high depth, such as offshore fields, where nowadays it is not applicable any conventional thermal process such as steam flooding
Resumo:
The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials
Resumo:
Nearly 3 x 1011 m3 of medium and light oils will remain in reservoirs worldwide after conventional recovery methods have been exhausted and much of this volume would be recovered by Enhanced Oil Recovery (EOR) methods. The in-situ combustion (ISC) is an EOR method in which an oxygen-containing gas is injected into a reservoir where it reacts with the crude oil to create a high-temperature combustion front that is propagated through the reservoir. The High Pressure Air Injection (HPAI) method is a particular denomination of the air injection process applied in light oil reservoirs, for which the combustion reactions are dominant between 150 and 300°C and the generation of flue gas is the main factor to the oil displacement. A simulation model of a homogeneous reservoir was built to study, which was initially undergone to primary production, for 3 years, next by a waterflooding process for 21 more years. At this point, with the mature condition established into the reservoir, three variations of this model were selected, according to the recovery factors (RF) reached, for study the in-situ combustion (HPAI) technique. Next to this, a sensitivity analysis on the RF of characteristic operational parameters of the method was carried out: air injection rate per well, oxygen concentration into the injected gas, patterns of air injection and wells perforations configuration. This analysis, for 10 more years of production time, was performed with assistance of the central composite design. The reservoir behavior and the impacts of chemical reactions parameters and of reservoir particularities on the RF were also evaluated. An economic analysis and a study to maximize the RF of the process were also carried out. The simulation runs were performed in the simulator of thermal processes in reservoirs STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modelling Group). The results showed the incremental RF were small and the net present value (NPV) is affected by high initial investments to compress the air. It was noticed that the adoption of high oxygen concentration into the injected gas and of the five spot pattern tends to improve the RF, and the wells perforations configuration has more influence with the increase of the oil thickness. Simulated cases relating to the reservoir particularities showed that smaller residual oil saturations to gas lead to greater RF and the presence of heterogeneities results in important variations on the RF and on the production curves
Resumo:
The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term
Resumo:
This work addresses biodiesel by transesterification from the use of waste frying oil as a possible technological alternative for both reducing greenhouse gas emissions and by presenting themselves as an environmental call to designate a rational use of oil when no longer played in the environment to become renewable energy. It has proposed location of a residual oil and fat treatment plant to produce biodiesel, using models of Location and Routing for the improvement of routes. To achieve the goal, questionnaires were administered in establishments that use oil or vegetable fat in their productive activities in order to quantify the residue, to analyze actions and environmental perception of people who work directly with the residue on the destination you are being given to oil and fat used. It has indicated using of two single setup location, the method of Center of Gravity and the model of Ardalan, a geographical point that minimizes the costs of transporting waste to the treatment plant. Actions have been proposed for the improvement of collection routes this residue using the Routing Method of Scanning, as an illustration. The results demonstrated the lack of knowledge of the people who deal directly with large amounts of waste, on the environmental impacts caused by their incorrect disposal. The models used were uniform since point out to neighborhoods in similar regions. The neighborhoods of Lagoa Nova / Morro Branco (Ardalan) and Nova Descoberta (Center of Gravity) as ideal for the installation of treatment plant. However, it is suggested to be tested other models that take into account new variables than those used (supply of waste and the distance between points). The routing through the method of scanning has shown that it is possible, in a simple way to optimize routes in order to reduce distances and therefore the logistics costs in the collection of such waste. Introducing a route as a test to gather the twenty largest oil suppliers used in sample frying, using as a main factor time 8 hour of working shift every day
Resumo:
Amongst the results of the AutPoc Project - Automation of Wells, established between UFRN and Petrobras with the support of the CNPq, FINEP, CTPETRO, FUNPEC, was developed a simulator for equipped wells of oil with the method of rise for continuous gas-lift. The gas-lift is a method of rise sufficiently used in production offshore (sea production), and its basic concept is to inject gas in the deep one of the producing well of oil transform it less dense in order to facilitate its displacement since the reservoir until the surface. Based in the use of tables and equations that condense the biggest number of information on characteristics of the reservoir, the well and the valves of gas injection, it is allowed, through successive interpolations, to simulate representative curves of the physical behavior of the existing characteristic variable. With a simulator that approaches a computer of real the physical conditions of an oil well is possible to analyze peculiar behaviors with very bigger speeds, since the constants of time of the system in question well are raised e, moreover, to optimize costs with assays in field. The simulator presents great versatility, with prominance the analysis of the influence of parameters, as the static pressure, relation gas-liquid, pressure in the head of the well, BSW (Relation Basic Sediments and Water) in curves of request in deep of the well and the attainment of the curve of performance of the well where it can be simulated rules of control and otimization. In moving the rules of control, the simulator allows the use in two ways of simulation: the application of the control saw software simulated enclosed in the proper simulator, as well as the use of external controllers. This implies that the simulator can be used as tool of validation of control algorithms. Through the potentialities above cited, of course one another powerful application for the simulator appears: the didactic use of the tool. It will be possible to use it in formation courses and recycling of engineers
Resumo:
To enhance the maintenance practices, Oil and Gas Pipelines are inspected from the inside by automated systems called PIG (Pipeline Inspection Gauge). The inspection and mapping of defects, as dents and holes, in the internal wall of these pipelines are increasingly put into service toward an overall Structural Integrity Policy. The residual life of these structures must be determined such that minimize its probability of failure. For this reason, the investigation on the detection limits of some basic topological features constituted by peaks or valleys disposed along a smooth surface is of great value for determining the sensitivity of the measurements of defects from some combinations of circumferential, axial and radial extent. In this investigation, it was analyzed an inductive profilometric sensor to scan three races, radius r1, r2, r3, in a circular surface of low carbon steel, equipped with eight consecutive defects simulated by bulges and holes by orbit, equally spaced at p/4 rad. A test rig and a methodology for testing in laboratory were developed to evaluate the sensor response and identify their dead zones and jumps due to fluctuations as a function of topological features and scanning velocity, four speeds different. The results are presented, analyzed and suggestions are made toward a new conception of sensor topologies, more sensible to detect these type of damage morphologies
Resumo:
The cultivation of microalgae biomass in order to produce biodiesel arises as an extremely promising aspect, in that the microalgae culture includes short cycle of reproduction, smaller areas for planting and residual biomass rich in protein content. The present dissertation evaluates the performance and features, through spectrometry in the region of infrared with transformed Fourier (FTIR) and spectrometry in the region of UVvisible (UV-Vis), of the extracted lipid material (LM) using different techniques of cell wall disruption (mechanical agitation at low and at high spin and agitation associated with cavitation). The technique of gas chromatography (GC) brought to light the success of alkaline transesterification in the conversion of oil into methyl monoesters (MME), which was also analyzed by spectroscopic techniques (FTIR, proton magnetic resonance (1H NMR) and carbon (13C NMR). Through thermogravimetric analysis (TGA) were analyzed the lipid material (LM), biodiesel and the microalgae biomass. The method which provided the best results concerning the efficiency in extraction of the LP of Monoraphidium sp. (12,51%) was by mechanical agitation at high spin (14 000 rpm), for 2 hours being the ideal time, as shown by the t test. The spectroscopic techniques (1H NMR, 13C NMR and FTIR) confirmed that the structure of methyl monoesters and the chromatographic data (CG) revealed a high content of saturated fatty acid esters (about 70%) being the major constituent eicosanoic acid (33,7%), which justifies the high thermal stability of microalgae biodiesel. The TGA also ratified the conversion rate (96%) of LM into MME, pointing out the quantitative results compatible with the values obtained through GC (about 98%) and confirmed the efficiency of the extraction methods used, showing that may be a good technique to confirm the extraction of these materials. The content of LM microalgae obtained (12,51%) indicates good potential for using such material as a raw material for biodiesel production, when compared to oil content which can be obtained from traditional oil for this use, since the productivity of microalgae per hectare is much larger and requires an extremely reduced period to renew its cultivation
Resumo:
The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix