3 resultados para reactivations
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Camorim Oilfield, discovered in 1970 in the shallow water domain of the Sergipe Sub-basin, produces hydrocarbons from the Carmópolis Member of the Muribeca Formation, the main reservoir interval, interpreted as siliciclastics deposited in an alluvial-fluvial-deltaic context during a late rifting phase of Neoaptian age, in the Sergipe-Alagoas Basin. The structural setting of the field defines different production blocks, being associated to the evolution of the Atalaia High during the rift stage and subsequent reactivations, encompassing NE-SW trending major normal faults and NWEW trending secondary faults. The complexity of this field is related to the strong facies variation due to the interaction between continental and coastal depositional environments, coupled with strata juxtaposition along fault blocks. This study aims to geologically characterize its reservoirs, to provide new insights to well drilling locations in order to increase the recovery factor of the field. Facies analysis based on drill cores and geophysical logs and the 3D interpretation of a seismic volume, provide a high resolution stratigraphic analysis approach to be applied in this geodynamic transitional context between the rift and drift evolutionary stages of the basin. The objective was to define spatial and time relations between production zones and the preferential directions of fluid flow, using isochore maps that represent the external geometry of the deposits and facies distribution maps to characterize the internal heterogeneities of these intervals, identified in a 4th order stratigraphic zoning. This work methodology, integrated in a 3D geological modelling process, will help to optimize well drilling and hydrocarbons production. This methodology may be applied in other reservoirs in tectonic and depositional contexts similar to the one observed at Camorim, for example, the oil fields in the Aracaju High, Sergipe Sub-basin, which together represent the largest volume of oil in place in onshore Brazilian basins
Resumo:
The Transbrasiliano Lineament is a major shear zone trending NE-SW, related to the Brasiliano orogeny and evolved through high to low temperature stages. In this study, the structural and geophysical signature of the northern segment of Transbrasiliano Lineament was studied in its northern border, between Ceará and Piauí states, involving the Brasiliano mylonite zone, the Jaibaras Graben and reactivations affecting the sedimentary sequences post-ordovician of Parnaíba Basin. In the literature, is commonly the phanerozoic reactivation of this structure referred, generating several late Brasiliano grabens predating the paleozoic Parnaíba syneclises, like the Jaibaras Graben. Faults that cut the stratigraphic units of the Parnaíba Basin along the entire length of the Transbrasiliano Lineament express its reactivation during younger events. The magnetic anomaly field reduced to the pole map exhibit anomalies NE-trending, interpreted as the signature of the Transbrasiliano Lineament (and Brasiliano structures of the Borborema Province) in its high-temperature expression. The Jaibaras Graben is marked by a straight anomalous track with high magnetic susceptibility (interpreted as a prevalence of ferromagnesian rocks, probably volcanic), apparently without significant continuity in the substrate of Parnaíba Basin. The geometric and kinematic analysis of the structures in the study area, using remote sensing and field data, led to the characterization of four deformation phases brittle the ductilebrittle Dn, D1, D2 and D3. The Dn deformation phase of ediacaran-cambrian age, occurs exclusively in the Jaibaras Graben, with the development of comparatively higher temperature (as regards to younger events) ductile-brittle structures. D1, D2 and D3 deformation phases affect both the Jaibaras Graben as well as the paleozoic sequences of the northeastern edge of Parnaíba Basin, generating structures developed at lower temperatures, basically brittle/cataclastic. The SRTM image analysis allowed mapping different NE, NW and E-W trending lineaments in Parnaíba Basin, whose correlation with mesoscopic structures is discussed in terms of the reactivation of Transbrasiliano Lineament in association with the stages of general Atlantic opening and separation between South America and Africa, or even the distal orogenic events in Paleozoic.
Resumo:
Recent endogenous processes provide dynamic movements in the lithosphere and generate the varied forms of relief, even in areas of passive continental margins, such as the research area of this work located in northeastern Brazil. The reactivation of Precambrian basement structures, after the breakup between South America and Africa in the Cretaceous played an important role in the evolution of basins, which provided generated forms of relief. These morphodynamic characteristics can be easily observed in marginal basins that exhibit strong evidence fault reactivations. The purpose of this study is to investigate the influence of morphotectonic processes in the landscape structuring of Paraíba Basin. Therefore, we used aeromagnetic, high–resolution images of the Shuttle Radar Topographic Mission–SRTM, structural geological data, deep well data and geological field data. Based on the results of the data was observed that some preexisting structures in the crystalline basement coincide with magnetic and topographic lineaments interpreted as fault reactivation of the Post–Miocene units in the Paraíba Basin. Faults that offset lithostratigraphic units provided evidence that tectonic activity associated with the deposition and erosion in the Paraíba Basin occurred from Cretaceous to the Quaternary. The neotectonic activity that occurred in Paraíba Basin was able to influence the deposition of sedimentary units and landforms. It indicates that the deposition of post–Cretaceous units was influenced by reactivation of Precambrian basement structures in this part of the Brazilian continental margin.