12 resultados para rare-earths in glasses

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth elements have recently been involved in a range of advanced technologies like microelectronics, membranes for catalytic conversion and applications in gas sensors. In the family of rare earth elements like cerium can play a key role in such industrial applications. However, the high cost of these materials and the control and efficiencies associated processes required for its use in advanced technologies, are a permanent obstacle to its industrial development. In present study was proposed the creation of phases based on rare earth elements that can be used because of its thermal behavior, ionic conduction and catalytic properties. This way were studied two types of structure (ABO3 and A2B2O7), the basis of rare earths, observing their transport properties of ionic and electronic, as well as their catalytic applications in the treatment of methane. For the process of obtaining the first structure, a new synthesis method based on the use of EDTA citrate mixture was used to develop a precursor, which undergone heat treatment at 950 ° C resulted in the development of submicron phase BaCeO3 powders. The catalytic activity of perovskite begins at 450 ° C to achieve complete conversion at 675 ° C, where at this temperature, the catalytic efficiency of the phase is maximum. The evolution of conductivity with temperature for the perovskite phase revealed a series of electrical changes strongly correlated with structural transitions known in the literature. Finally, we can establish a real correlation between the high catalytic activity observed around the temperature of 650 ° C and increasing the oxygen ionic conductivity. For the second structure, showed clearly that it is possible, through chemical processes optimized to separate the rare earth elements and synthesize a pyrochlore phase TR2Ce2O7 particular formula. This "extracted phase" can be obtained directly at low cost, based on complex systems made of natural minerals and tailings, such as monazite. Moreover, this method is applied to matters of "no cost", which is the case of waste, making a preparation method of phases useful for high technology applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainability in buildings, while reducing the impact on the environment, contributes to the promotion of social welfare, to increase the health and productivity of occupants. The search for a way of build that meets the aspirations and development of humanity without, however, represent degradation of the environment, has become the great challenge of contemporary architecture. It is considered that the incorporation of principles that provide a sustainable building with careful choices of design solutions contribute to a better economic and thermal performance of the building, as well as functional and psychological comfort to its users. Based on this general understanding, this paper presents an architecture project aimed to health care whose the solutions adopted follow carefully the relevant legislation and sets his sights on the theme of sustainability. The methodology began with studies on the themes of verification service of deaths, sustainability and those application in construction developed through research in academic studies and analysis of architectural projects, using them like reference for the solutions adopted. Within the project analysis was performed a visit to the verification service of deaths in the city of Palmas in Tocantins, subsidizing information that, plus the relevant legislation, led to functional programming and pre-dimensional of the building to be designed. The result of this programming environments were individual records with information from environmental restrictions, space required for the development of activities, desirable flow and sustainability strategies, that can be considered as the first product of relevance of the professional master's degree. Finally we have outlined the basic design architecture of a Verification Service of Death SVO/RN (in portuguese), whose process of projecting defined as a guiding line of work four points: the use of bioclimatic architecture as the main feature projectual, the use of resources would provide minimal harm to the environment, the use of modulation and structure to the building as a form of rationalization and finally the search for solutions that ensure environmental and psychological comfort to users. Importantly to highlight that, besides owning a rare theme in literature that refers to architectural projects, the whole project was drawn up with foundations in projective criteria that contribute to environmental sustainability, with emphasis on thermal performance, energy efficiency and reuse of rainwater

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we analyze the effects that the presence of a near gas giant planet can cause in its host star. It has been argued that the star planet interaction can cause changes in the coronal and chromospheric stellar activity. With this in mind, we analyze a sample of 53 extrasolar planets orbiting F, G and K main sequence stars, among them three super-Earths. In this analysis, we look for evidence of changes in the chromospheric activity due to the proximity of the giant planet. We show that, so far, there is not enough evidence to support such a hypothesis. Making use of the same sample and also taking in account available data for the Solar System, we revisit the so-called magnetic Bode s law. This law proposes the existence of a direct relationship between magnetism and rotation. By using estimations for the stellar and planetary magnetic momentM and the angular momentumL, we construct a Blackett s diagram (logL 􀀀logM). In this diagram is evident that the magnetic Bode s law is valid for both the Solar System and the new planetary systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on Brazilian biodiversity are still very few and can observe the difference of knowledge between the different regions of the country. This affirmation can be verified in the investigation to identify the rare species in Brazil and the key biodiversity areas (ACBs). In that study were identified for Brasil 2.256 rare species and 752 ACBs. The Rio Grande do Norte (RN) was the only Brazilian state that has not been identified any rare species and no ACBs, possibly due to the lack of floristic studies in this state. A particular area was selected for this study: an area of ecological tension with savanna physiognomy in Rio do Fogo, RN. This savanna community is represented in RN in a fragment and immersed in restinga and caatinga and was identified and described only through of radar imagens there are no studies to date in loco . We have prepared the following questions about this community savanna: 1) The region delimited and described by through of radar images by the RADAMBRASIL, 1976, can be associated of the Cerrado, in terms of floristic ?; 2) What is the floristic composition of this area? This area includes rare species, endemic or endangered? 3) What is the geographical and phytogeographical distribution of plant species registered in this area? 4) Those plant species registered are endemic or have affinity with other areas phytoecological Brazilian? To answer these questions we performed a floristic inventory of the August 2007 to September/2009. The results are presented in two chapters (manuscripts). The first chapter, titled "The Savannah Rio Grande do Norte: floristic links with other plant formations in the Northeast and Center-West Brazil" was submitted to the Revista Brasileira de Botância. Chapter 1 discusses the phytogeographical distribution of the species, by comparing floristic studies conducted in the Cerrado, Caatinga and Restinga in the Northeast and Cerrado of the Central Brazil. The analysis of data of this study and compilation with other studies indicated that: i) the record of 94 plant species; ii) of total species, about 64% are associated with the Cerrado, the second specialized bibliography, and about 78% as the List of Species of Flora of Brazil. However, about 73% of total species (94) are also distributed in the Caatinga, the Atlantic forest 64%, the Amazon forest 64%, the Pantanal 15% and the Pampa 12%. Floristically the data show that the community studied is influenced by other floras, has a structure where grasses dominate and also because of his appearance the same savanna then be classified as a Savana gramíneo-lenhosa do tabuleiro . Chapter 2, titled "Considerations on the flora of a savanna community in Rio Grande do Norte, northeastern Brazil: Subsidy key area for conservation" was submitted to the Revista Natureza e Conservação. This has the objective of improve the knowledge of flora of Rio Grande do Norte and to identify possible rare species and consequently increase the key areas of biodiversity in Brazil. The data indicated that: i) of 94 species registered in the study area, 40 were new records for the Rio Grande do Norte state; ii) These citations to unpublished state, Stylosanthes montevidensis Vogel (Fabaceae) and Aristida laevis (Nees) Kunth (Poaceae) are indicated for the first time to the Northeast of Brazil; iii) are registered in the area 24 species endemic to Brazil and 63 non-endemic; iv) Aspilia procumbens Baker (Asteraceae) registered in the area is considered a restricted species and micro endemic Rio Grande do Norte, ie rare species; v) Aspilia procumbens is also cited in the category of critically endangered species and Stilpnopappus cearensis Hubber (Asteraceae) a species vulnerable to extinction. This study shows a new area phytoecological in Rio Grande do Norte and indicates the area's potential to contribute with the sites of global significance for biodiversity conservation, either locally, regionally and nationally. This will certainly contribute to respond some targets set by the Global Strategy for Plant Conservation and the Convention on Biological Diversity such as the inventory of vegetal diversity in a region with little collection, which will provide data that contributes to questions and themes related to biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainability in buildings, while reducing the impact on the environment, contributes to the promotion of social welfare, to increase the health and productivity of occupants. The search for a way of build that meets the aspirations and development of humanity without, however, represent degradation of the environment, has become the great challenge of contemporary architecture. It is considered that the incorporation of principles that provide a sustainable building with careful choices of design solutions contribute to a better economic and thermal performance of the building, as well as functional and psychological comfort to its users. Based on this general understanding, this paper presents an architecture project aimed to health care whose the solutions adopted follow carefully the relevant legislation and sets his sights on the theme of sustainability. The methodology began with studies on the themes of verification service of deaths, sustainability and those application in construction developed through research in academic studies and analysis of architectural projects, using them like reference for the solutions adopted. Within the project analysis was performed a visit to the verification service of deaths in the city of Palmas in Tocantins, subsidizing information that, plus the relevant legislation, led to functional programming and pre-dimensional of the building to be designed. The result of this programming environments were individual records with information from environmental restrictions, space required for the development of activities, desirable flow and sustainability strategies, that can be considered as the first product of relevance of the professional master's degree. Finally we have outlined the basic design architecture of a Verification Service of Death SVO/RN (in portuguese), whose process of projecting defined as a guiding line of work four points: the use of bioclimatic architecture as the main feature projectual, the use of resources would provide minimal harm to the environment, the use of modulation and structure to the building as a form of rationalization and finally the search for solutions that ensure environmental and psychological comfort to users. Importantly to highlight that, besides owning a rare theme in literature that refers to architectural projects, the whole project was drawn up with foundations in projective criteria that contribute to environmental sustainability, with emphasis on thermal performance, energy efficiency and reuse of rainwater