38 resultados para prototypes

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the research was to investigate the energy performance of residential vertical buildings envelope in the hot and humid climate of Natal, capital of Rio Grande do Norte, based in the Technical Regulation of Quality for Energy Efficiency Level in Residential Buildings (RTQ -R), launched in 2010. The study pretends to contribute to the development of design strategies appropriate to the specific local climate and the increasing of energy efficiency level of the envelope. The methodological procedures included the survey in 22 (twenty two) residential buildings, the formulation of representative prototypes based on typological and constructives characters researched and the classification of the level of energy efficiency in the envelopment of these prototypes, using as a tool the prescriptive method of the RTQ-R and the parametric analyzes from assigning different values of the following variables: shape of the pavement type; distribution of housing compartments; orientation of the building; area and shading of openings; thermal transmittance, and solar absorptance of opaque materials of the frontage in order to evaluate the influence of these on the envelopment performance. The main results accomplished with this work includes the qualification of vertical residential buildings in Natal/RN; the verification of the adequacy of these buildings to local climate based from the diagnosis of the thermal energy of the envelopment performance, the identification of variables with more significant influence on the prescriptive methodology of RTQ-R and design solutions more favorable to obtain higher levels energy efficiency by this method. Finally, it was verified, that some of these solutions proved contradictory in relation to the recommendations contained in the theoretical approaches regarding environmental comfort in hot and humid weather, which indicates the need for improvement of the prescriptive method RTQ-R and further research on efficient design solutions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we propose a methodology for teaching robotics in elementary schools, based on the socio-historical Vygotsky theory. This methodology in conjunction with the Lego Mindstoms kit (R) and an educational software (an interface for control and programming of prototypes) are part of an educational robotics system named RoboEduc. For the practical development of this work, we have used the action-research strategy, being realized robotics activities with participation of children with age between 8 and 10 years, students of the elementary school level of Municipal School Ascendino de Almeida. This school is located at the city zone of Pitimbu, at the periphery of Natal, in Rio Grande do Norte state. The activities have focused on understanding the construction of robotic prototypes, their programming and control. At constructing prototypes, children develop zone of proximal development (ZPDs) that are learning spaces that, when well used, allow the construction not only of scientific concepts by the individuals but also of abilities and capabilities that are important for the social and cultural interactiond of each one and of the group. With the development of these practical workshops, it was possible to analyse the use of the Robot as the mediator element of the teaching-learning process and the contributions that the use of robotics may bring to teaching since elementary levels

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ln this work, planar quasi- Y agi antennas are investigated based on the concept of the classic Y agi_Uda antennas. These antennas represent improvements on the topologies of the antennas existing printed because they present characteristics of broad bandwidth, excellent radiation diagrams and simple construction. New configurations are adapted for the driver of the antennas, introducing patches elements into the driver. These new configurations are named Patches Elements Anteonas (PEA). This adaptation is obtained from simulations that are executed usiog the software C8T Microwave 8tudio 5. After doing the optimizations, procedures for construction and measurement ofthe prototypes are executed in order to improve the performance of the antennas in such way that they could be used in wireless communication applications, such as Bluetooth, WLAN' s and Wi-Fi. Next, the quasi- Y agi antennas are studied in order to implement them in arrangements. The arrangements construction is based 00 the best driver configuration of the antenna developed in this work. First, a linear arrangement composed by two elements of quasi¬Yagi antennas is constructed in such way that the radiation characteristics and the mutual coupling effects could be analyzed. After that, a 90° angle arrangement composed by two elements is studied to observe the effect of circular polarization. Experiments are executed in order to evaluate the arrangements performance. The experimental results show that the analysis made in this work is efficient and accurate. The numerical values obtained for the analyzed parameters of each structure developed are compared with the experimental values. 80, it is possible to observe a good concordance between them. Finally, some future works proposals are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to present how the reconfigurable microstrip antennas and frequency selective surfaces can be used to operate at communication systems that require changing their operation frequency according to system requirements or environmental conditions. The main purpose is to present a reconfigurable circular microstrip antenna using a parasitic ring and a reconfigurable dipole frequency selective surface. Thereupon there are shown fundamental topics like microstrip antennas, PIN diodes and the fundamental theory of reconfigurable antennas and frequency selective surfaces. There are shown the simulations and measurements of the fabricated prototypes and it is done an analysis of some parameters like the bandwidth and radiation pattern, for the antennas, and the transmission characteristics, for the frequency selective surface. Copper strips were used in place of the diodes for proof of the reconfigurability concept

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to present how the application of fractal geometry to the elements of a log-periodic array can become a good alternative when one wants to reduce the size of the array. Two types of log-periodic arrays were proposed: one with fed by microstrip line and other fed by electromagnetic coupling. To the elements of these arrays were applied fractal Koch contours, at two levels. In order to validate the results obtained some prototypes were built, which were measured on a vector network analyzer and simulated in a software, for comparison. The results presented reductions of 60% in the total area of the arrays, for both types. By analyzing the graphs of return loss, it was observed that the application of fractal contours made different resonant frequencies appear in the arrays. Furthermore, a good agreement was observed between simulated and measured results. The array with feeding by electromagnetic coupling presented, after application of fractal contours, radiation pattern with more smooth forms than the array with feeding by microstrip line

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous works have studied the characteristics and peculiarities of P2P networks, especially security information aspects. Most works, in some way, deal with the sharing of resources and, in particular, the storage of files. This work complements previous studies and adds new definitions relating to this kind of systems. A system for safe storage of files (SAS-P2P) was specified and built, based on P2P technology, using the JXTA platform. This system uses standard X.509 and PKCS # 12 digital certificates, issued and managed by a public key infrastructure, which was also specified and developed based on P2P technology (PKIX-P2P). The information is stored in a special file with XML format which is especially prepared, facilitating handling and interoperability among applications. The intention of developing the SAS-P2P system was to offer a complementary service for Giga Natal network users, through which the participants in this network can collaboratively build a shared storage area, with important security features such as availability, confidentiality, authenticity and fault tolerance. Besides the specification, development of prototypes and testing of the SAS-P2P system, tests of the PKIX-P2P Manager module were also performed, in order to determine its fault tolerance and the effective calculation of the reputation of the certifying authorities participating in the system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstrip antennas are widely used in modern telecommunication systems. This is particularly due to the great variety of geometries and because they are easily built and integrated to other high frequency devices and circuits. This work presents a study of the properties of the microstrip antenna with an aperture impressed in the conducting patch. Besides, the analysis is performed for isotropic and anisotropic dielectric substrates. The Multiport Network Model MNM is used in combination with the Segmentation Method and the Greens function technique in the analysis of the considered microstrip antenna geometries. The numerical analysis is performed by using the boundary value problem solution, by considering separately the impedance matrix of the structure segments. The analysis for the complete structure is implemented by choosing properly the number and location of the neighboor element ports. The numerial analysis is performed for the following antenna geometries: resonant cavity, microstrip rectangular patch antenna, and microstrip rectangular patch antenna with aperture. The analysis is firstly developed for microstrip antennas on isotropic substrates, and then extended to the case of microstrip antennas on anisotropic substrates by using a Mapping Method. The experimental work is described and related to the development of several prototypes of rectangular microstrip patch antennas wtih and without rectangular apertures. A good agreement was observed between the simulated and measured results. Thereafter, a good agreement was also observed between the results of this work and those shown in literature for microstrip antennas on isotropic substrates. Furthermore, results are proposed for rectangular microstrip patch antennas wtih rectangular apertures in the conducting patch

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and experimental analysis about the properties of microstrip antennas with integrated frequency selective surfaces (Frequency Selective Surface - FSS). The integration occurs through the insertion of the FSS on ground plane of microstrip patch antenna. This integration aims to improve some characteristics of the antennas. The FSS using patch-type elements in square unit cells. Specifically, the simulated results are obtained using the commercial computer program CST Studio Suite® version 2011. From a standard antenna, designed to operate in wireless communication systems of IEEE 802.11 a / b / g / n the dimensions of the FSS are varied to obtain an optimization of some antenna parameters such as impedance matching and selectivity in the operating bands. After optimization of the investigated parameters are built two prototypes of microstrip patch antennas with and without the FSS ground plane. Comparisons are made of the results with the experimental results by 14 ZVB network analyzer from Rohde & Schwarz ®. The comparison aims to validate the simulations performed and show the improvements obtained with the FSS in integrated ground plane antenna. In the construction of prototypes, we used dielectric substrates of the type of Rogers Corporation RT-3060 with relative permittivity equal to 10.2 and low loss tangent. Suggestions for continued work are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal elements in planar microstrip structures. In particular, microstrip antennas and frequency selective surfaces (FSSs) had changed its conventional elements to fractal shapes. For microstrip antennas, was used as the radiating element of Minkowski fractal. The feeding method used was microstrip line. Some prototypes were built and the analysis revealed the possibility of miniaturization of structures, besides the multiband behavior, provided by the fractal element. In particular, the Minkowski fractal antenna level 3 was used to exploit the multiband feature, enabling simultaneous operation of two commercial tracks (Wi-Fi and WiMAX) regulated by ANATEL. After, we investigated the effect of switches that have been placed on the at the pre-fractal edges of radiating element. For the FSSs, the fractal used to elements of FSSs was Dürer s pentagon. Some prototypes were built and measured. The results showed a multiband behavior of the structure provided by fractal geometry. Then, a parametric analysis allowed the analysis of the variation of periodicity on the electromagnetic behavior of FSS, and its bandwidth and quality factor. For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft DesignerTM and a vector network analyzer, Agilent N5230A model