1 resultado para presence only

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since its synthesis over 48 years rifampicin has been extensively studied. The literature reports the characterization of thermal events for rifampicin in nitrogen atmosphere, however, no characterization in synthetic air atmosphere. This paper aims to contribute to the thermal study of rifampicin through thermal (TG / DTG, DTA, DSC and DSC - FOTOVISUAL ) and non-thermal (HPLC, XRPD , IR - FTIR , PCA) and its main degradation products ( rifampicin quinone , rifampicin N-oxide 3- formylrifamicin). Rifampicin study was characterized as polymorph form II from techniques DSC, IR and XRPD. TG curves for rifampicin in synthetic air atmosphere showed higher thermal stability than those in N2, when analyzed Ti and Ea. There was characterized as overlapping events melting and recrystallization under N2 with weight loss in the TG curve, suggesting concomitant decomposition. Images DSCFotovisual showed no fusion event and showed darkening of the sample during analysis. The DTA curve in synthetic air atmosphere was visually different from DTA and DSC curves under N2, suggesting the absence of recrystallization and melting or presence only decomposition. The IV - FTIR analysis along with PCA analysis and HPLC and thermal data suggest that rifampicin for their fusion is concomitant decomposition of the sample in N2 and fusion events and recrystallization do not occur in synthetic air atmosphere. Decomposition products studied in an air atmosphere showed no melting event and presented simultaneously to the decomposition initiation of heating after process loss of water and / or solvent, varying the Ti initiating events. The Coats - Redfern , Madsudhanan , Van Krevelen and Herwitz - Mertzger kinetic parameters for samples , through the methods of OZAWA , in an atmosphere of synthetic air and / or N2 rifampicin proved more stable than its degradation products . The kinetic data showed good correlation between the different models employed. In this way we contribute to obtaining information that may assist studies of pharmaceutical compatibility and stability of substances