3 resultados para predator-prey demography
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Nile tilapia, Oreochromis niloticus, is an important omnivorous fish in the reservoirs of the semi-arid region of Brazil. Throughout its growth tilapia s feeding behavior changes from a visual predator of zooplankton to a filter-feeder, collecting suspended particulate matter, including planktonic organisms, through pumping. This feature results in different impacts of tilapia on plankton community as the fish grows. Aiming to quantify the functional response of different sizes of Nile tilapia on zooplankton experiments in microcosms scale in the laboratory and in mesocosm scale in the field were carried out. The data were fitted to four different models of functional response. The best fits were obtained for nonlinear models in laboratory experiments. While the experiments in mesocosms were the best settings for responses of type I (juvenile and adult tilapia) and type III (fry). The Manly's alpha index was used to evaluate the feeding selectivity of tilapia on the three main groups of the zooplankton in the experiments in mesocosms. The results show that: (i) rotifers were the preferred prey of fingerlings,(ii) copepods were rejected by fry and juvenile tilapia and (iii) adult fish fed non-selectively on copepods, cladocerans and rotifers. The functional response models obtained in this research can be applied to population models and help in modeling the dynamics of interactions between Nile tilapia and the planktonic communities in the reservoirs of the semi-arid
Resumo:
Many prey organisms change their phenotype to reduce the predation risk. However, such changes are associated with trade-offs, and can have negative effects on prey growth or reproduction. Understand how preys assess the predation risk is essential to evaluate the adaptive value of predator-induced phenotypic and its ecological consequences. In this study, we performed a mesocosm experiment to test: i) if growth and stoichiometry of Lithobates catesbeianus tadpoles is altered in response to giant water bug presence (Belostoma spp.); ii) if these responses depend on tadpoles density in environment. Here, we show that tadpoles growth and stoichiometry are not changed by predator presence, neither in low nor in high densities. Our results suggest that tadpoles exposed to predation risk regulate their physiology to preserve the elemental stoichiometric homeostase of their body and excretion. Further, point out to need for future studies that elucidate under what conditions growth and stoichiometry are changed in response to predation risk
Resumo:
The trophic ecology studies issues related to the diet of individuals within a community .The relation between the body size of the predator and the prey size, individual specialization and niche breadth are some of the issues that can be discussed by it .I collected the lizards using pitfall trap, glue and active collecting traps in a fragment of Caatinga. The most common species in this community were Tropidurus hispidus, T. semitaeniatus and Cnemidophorus ocellifer. The visits to the farm also relied on collecting invertebrates at each season to understand how the nutritional resources of lizards were presented in each one of them. I tried to answer some questions : 1) If there was a positive relation between body size of the predator and the size of prey of the community ; 2) If in different seasons the relation of body size of the predator and the maximum and/or minimum size of the prey would be positive ; 3) If species with different foraging strategies have positive relation on the size of the predatorprey relation; 4) If the seasonality would influence on the individual expertise of lizards community and more common species; 5) If the breadth of the niche would be influenced by seasonality ; 6) If more individuals with different morphology between them would present less similar diet. I found that there was indeed a positive relationship between size of prey and predator, but nonexistent related to the minimum size of prey; Among the seasons relative size of predators and prey was different for the maximum and minimum size, but was positively related only to the size of the maximum prey. And comparisons between different foraging strategies had the maximum and minimum line inclination greater than zero and different from each other; individual specialization was not influenced by seasonality and the niche breadth was wider in the dry season only to T. semitaeniatus. At last I didn't find a significant negative relationship between morphological dissimilarity and similarity of diet.