2 resultados para power transmission control
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work an algorithm for fault location is proposed. It contains the following functions: fault detection, fault classification and fault location. Mathematical Morphology is used to process currents obtained in the monitored terminals. Unlike Fourier and Wavelet transforms that are usually applied to fault location, the Mathematical Morphology is a non-linear operation that uses only basic operation (sum, subtraction, maximum and minimum). Thus, Mathematical Morphology is computationally very efficient. For detection and classification functions, the Morphological Wavelet was used. On fault location module the Multiresolution Morphological Gradient was used to detect the traveling waves and their polarities. Hence, recorded the arrival in the two first traveling waves incident at the measured terminal and knowing the velocity of propagation, pinpoint the fault location can be estimated. The algorithm was applied in a 440 kV power transmission system, simulated on ATP. Several fault conditions where studied and the following parameters were evaluated: fault location, fault type, fault resistance, fault inception angle, noise level and sampling rate. The results show that the application of Mathematical Morphology in faults location is very promising
Resumo:
A typical electrical power system is characterized by centr alization of power gene- ration. However, with the restructuring of the electric sys tem, this topology is changing with the insertion of generators in parallel with the distri bution system (distributed gene- ration) that provides several benefits to be located near to e nergy consumers. Therefore, the integration of distributed generators, especially fro m renewable sources in the Brazi- lian system has been common every year. However, this new sys tem topology may result in new challenges in the field of the power system control, ope ration, and protection. One of the main problems related to the distributed generati on is the islanding formation, witch can result in safety risk to the people and to the power g rid. Among the several islanding protection techniques, passive techniques have low implementation cost and simplicity, requiring only voltage and current measuremen ts to detect system problems. This paper proposes a protection system based on the wavelet transform with overcur- rent and under/overvoltage functions as well as infomation of fault-induced transients in order to provide a fast detection and identification of fault s in the system. The propo- sed protection scheme was evaluated through simulation and experimental studies, with performance similar to the overcurrent and under/overvolt age conventional methods, but with the additional detection of the exact moment of the fault.