16 resultados para poly glutamic acid

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methotrexate (MTX) is a drug used in the chemotherapy of some kind of cancers, autoimmune diseases and non inflammatory resistant to corticosteroids uveits. However, the rapid plasmatic elimination limits its therapeutic success, which leads to administration of high doses to maintain the therapeutic levels in the target tissues, occurring potential side effects. The aim of this study was to obtain spray dried biodegradable poly-lactic acid co-glycolic acid (PLGA) microparticles containing MTX. Thus, suitable amounts of MTX and PLGA were dissolved in appropriate solvent system to obtain solutions at different ratios drug/polymer (10, 20, 30 and 50% m/m). The physicochemical characterizing included the quantitative analysis of the drug using a validate UV-VIS spectrophotometry method, scanning electron microscopy (SEM), infrared spectrophotometry (IR), thermal analyses and X-ray diffraction analysis. The in vitro release studies were carried out in a thermostatized phosphate buffer pH 7.4 (0.05 M KH2PO4) medium at 37°C ± 0.2 °C. The in vitro release date was subjected to different kinetics release models. The MTX-loaded PLGA microparticles showed a spherical shape with smooth surface and high level of entrapped drug. The encapsulation efficiency was greater then 80%. IR spectroscopy showed that there was no chemical bond between the compounds, suggesting just the possible occurrence of hydrogen bound interactions. The thermal analyses and X-ray diffraction analysis shown that MTX is homogeneously dispersed inside polymeric matrix, with a prevalent amorphous state or in a stable molecular dispersion. The in vitro release studies confirmed the sustained release for distinct MTX-loaded PLGA microparticles. The involved drug release mechanism was non Fickian diffusion, which was confirmed by Kornmeyer-Peppas kinetic model. The experimental results demonstrated that the MTX-loaded PLGA microparticles were successfully obtained by spray drying and its potential as prolonged drug release system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New drug delivery systems have been used to increase chemotherapy efficacy due the possible drug resistance of cancer cells. Poly (lactic acid) (PLA) microparticles are able to reduce toxicity and prolong methotrexate (MTX) release. In addition, the use of PLA/poloxamer polymer blends can improve drug release due to changes in the interaction of particles with biological surfaces. The aim of this study was developing spray dried biodegradable MTX-loaded microparticles and evaluate PLA interactions with different kinds of Pluronic® (PLUF127 and PLUF68) in order to modulate drug release. The variables included different drug:polymer (1:10, 1:4.5, 1:3) and polymer:copolymer ratios (25:75, 50:50, 75:25). The precision and accuracy of spray drying method was confirmed assessing drug loading into particles (75.0- 101.3%). The MTX/PLA microparticles showed spherical shape with an apparently smooth surface, which was dependent on the PLU ratio used into blends particles. XRD and thermal analysis demonstrated that the drug was homogeneously dispersed into polymer matrix, whereas the miscibility among components was dependent on the used polymer:copolymer ratio. No new drug- polymer bond was identified by FTIR analysis. The in vitro performance of MTX-loaded PLA microparticles demonstrated an extended-release profile fitted using Korsmeyer- Peppas kinetic model. The PLU accelerated drug release rate possible due PLU leached in the matrix. Nevertheless, drug release studies carried out in cell culture demonstrated the ability of PLU modulating drug release from blend microparticles. This effect was confirmed by cytotoxicity observed according to the amount of drug released as a function of time. Thus, studied PLU was able to improve the performance of spray dried MTX-loaded PLA microparticles, which can be successfully used as carries for modulated drug delivery with potential in vivo application

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some fibrous materials, for having properties such as biocompatibility, strength and flexibility, are of great interest for medical and pharmaceutical applications. Among these materials, the fabric made from polylactic acid (PLA) has received special attention, and beside to present these features, is derived from biological source, antimicrobial and bioabsorbable. One of the limitations of PLA is its low wettability and capillarity. Due to this, it is necessary to perform surface modification of the knitted fabric, increasing its hydrophilicity. This work aims to realize the plasma treatment at low pressure in order to increase the surface energy of the polymer. The work was divided into three steps: i) Influence of the gas ratio (oxygen and nitrogen) in the surface modification of PLA fabric after the plasma treatment, ii) physical characterization and physicochemical surface tissue; iii) Evaluation of the effect from current and gas ratio in the capillary rise of tissues and iv) Study of capillarity in yarns and fabrics. The results showed that better gas ratios were the atmospheres: 100% oxygen; 100% nitrogen and 50% oxygen and 50% nitrogen. The surface characterization showed changes in topography and introduction of polar groups which increased the wettability of the fabric. In another part of this study, it was found that the atmosphere containing only nitrogen gas showed the most capillary rise to a current of 0.15 A. The results in capillary yarns and fabrics showed that the thread reached equilibrium in a time much less than the fabric to an atmosphere of 100% nitrogen and 0.15 A. Current Plasma technology was effective to increase the hydrophilicity of PLA fabric, providing surface characteristics favorable for future application in the biomedical field

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To the vertebrates, maintain body balance against the gravitational field and be able to orient themselves in the environment are fundamental aspects for survival, in which the participation of vestibular system is essential. As part of this system, the vestibular nuclear complex is the first central station that, by integrating many information (visual, proprioceptive), and the vestibular, assumes the lead role in maintaining balance. In this study, the vestibular nuclear complex was evaluated in relation to its cytoarchitecture and neurochemical content of cells and axon terminals, through the techniques of Nissl staining and immunohistochemistry for neuronal specific nuclear protein (NeuN), glutamate (Glu), substance P (SP), choline acetyltransferase (ChAT) (enzyme that synthesizes acetylcholine-Ach) and glutamic acid decarboxylase (GAD) (enzyme that synthesizes gamma-amino butyric acid-GABA). The common marmoset (Callithrix jacchus) was used as experimental animal, which is a small primate native from the Atlantic Forest in the Brazilian Northeast. As results, the Nissl technique, complemented by immunohistochemistry for NeuN allowed to delineate the vestibular nucleus superior, lateral, medial and inferior (or descending) in the brain of the common marmoset. Neurons and terminals immunoreactive to Glu and ChAT and only immunoreactive terminals to SP and GAD were seen in all nuclei, although in varying density. This study confirms the presence in the vestibular nuclei of the common marmoset, of Glu and SP in terminals, probably from the first order neurons of vestibular ganglion, and of GABA in terminals, presumably from Purkinge cells of the cerebellum. Second-order neurons of the vestibular nuclei seem to use Glu and Ach as neurotransmitters, judging by their expressive presence in the cell bodies of these nuclei in common marmosets, as reported in other species

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The auditory system is composed by a set of relays from the outer ear to the cerebral cortex. In mammals, the central auditory system is composed by cochlear nuclei, superior olivary complex, inferior colliculus and medial geniculate body. In this study, the auditory rombencephalic centers, the cochlear nuclear complex and the superior olivary complex were evaluated from the cytoarchitecture and neurochemical aspects, thorough Nissl staining and immunohistochemical techniques to reveal specific neuron nuclear protein (NeuN), glutamate (Glu), glutamic acid decarboxilase (GAD), enkephalin (ENK), serotonin (5-HT), choline acetyltransferase (ChAT) and calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). The common marmoset (Callithrix jacchus), a little native primate of the Brazilian atlantic forest was used as an experimental animal. As results, it was noted that the cochlear nuclear complex is composed by anteroventral, posteroventral and dorsal nuclei, and the superior olivary complex is constituted by the lateral and medial superior olivary nuclei and the trapezoid body nucleus. Glu, GAD, ENK, ChAT, CB, CR, PV-immunoreactive cells, fibers and terminals besides besides only 5-HT terminals were found unhomogeneously in all nuclei, of both complex. The emerging data are discussed in a comparative and functional context, and represent an important contribution to knowledge of the central auditory pathways in the common marmoset, and then in primates

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study describes the stability and rheological behavior of suspensions of poly (N-isopropylacrylamide) (PNIPAM), poly (N-isopropylacrylamide)-chitosan (PNIPAMCS), and poly (N-isopropylacrylamide)-chitosan-poly (acrylic acid) (PNIPAM-CS-PAA) crosslinked particles sensitive to pH and temperature. These dual-sensitive materials were simply obtained by one-pot method, via free-radical precipitation copolymerization with potassium persulfate, using N,N -methylenebisacrylamide (MBA) as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests and analytical centrifugation. The PNIPAM-CS particles showed higher stability in acid and neutral media, whereas PNIPAM-CS-PAA particles were more stable in neutral and alkaline media, both below and above the LCST of poly (Nisopropylacrylamide) (stability data). This is due to different interparticle interactions, as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH-sensitive polymers to crosslinked poly (Nisopropylacrylamide) particles not only produced dual-sensitive materials, but allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to generate an asymmetric biocompactible and biodegradable chitosan membrane modified by the contact with a poly(acrylic acid) solution at one of its sides at room temperature and 60◦C. The pure chitosan membrane, as well as the ones treated with poly(acrylic acid) were characterized by infrared spectroscopy (FTIRATR) at angles of 39◦, 45◦ and 60◦ , swelling capacity in water, thermal analysis (TG/DTG), scanning electronic microscopy (SEM) and permeation experiments using metronidazole at 0,1% and 0,2% as a model drug. The results confirmed the presence of ionic interaction between chitosan and poly(acrylic acid) by means of a polyelectrolyte complex (PEC) formation. They also showed that such interactions were more effective at 60◦C since this temperature is above the chitosan glass transition temperature wich makes the diffusion of poly(acrylic acid) easier, and that the two treated membranes were asymmetrics, more thermically stable and less permeable in relation to metronidazole than the pure chitosan membrane

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dispersions composed of polyelectrolyte complexes based on chitosan and poly(methacrylic acid), PMAA, were obtained by the dropping method and template polymerization. The effect of molecular weight of PMAA and ionic strength on the formation of chitosan/poly(methacrylic acid), CS/PMAA, complexes was evaluated using the dropping method. The increase in molecular weight of PMAA inhibited the formation of insoluble complexes, while the increase in ionic strength first favored the formation of the complex followed by inhibiting it at higher concentrations. The polyelectrolyte complexation was strongly dependent on macromolecular dimensions, both in terms of molecular weight and of coil expansion/contraction driven by polyelectrolyte effect. The resultant particles from dropping method and template polymerization were characterized as having regions with different charge densities: chitosan predominating in the core and poly(methacrylic acid) at the surface, the particles being negatively charged, as a consequence. Albumin was adsorbed on templatepolymerized CS/PMAA complexes (after crosslinking with glutardialdehyde) and pH was controlled in order to obtain two conditions: (i) adsorption of positively charged albumin, and (ii) adsorption of albumin at its isoelectric point. Adsorption isotherms and zeta potential measurements showed that albumin adsorption was controlled by hydrogen bonding/van der Waals interactions and that brushlike structures may enhance adsorption of albumin on these particles

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)