3 resultados para polimeros

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseqüently the 4f-4f transitions of the lanthanide ions are observed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latexes based on acrylic acid, acrylamide, ethyl methacrylate, and ethyl acrylate were synthesized via emulsion polymerization with different monomer compositions. The resultant latices were thickened with different molar ratios of NaOH to acrylic acid and were analyzed in terms of acid‐basis titrimetry, turbidimetry, rheology, and tensiometry. Titrimetry, turbidimetry, and rheometry were used to analyze factors such as carboxyl group availability and particle solubilization, tensiometry monitoring the influence of carboxyl neutralization on polymer‐surfactant interactions. For the acrylic acid content used in this work (20 wt%), the results indicated that as carboxyl groups distribution became more homogeneous, the process of latex thickening became more effective

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated