9 resultados para plastificante

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population growth experienced in major cities, allied to society s need of infra-structure, especially ones related to habitational demands, increases the consumption of construction materials. As a consequence, consumption of natural resources itself. Thus, due to this process, concrete is one of the most produced materials in civil construction. This is also due to the great diversity of its application, easiness in its execution and adequate mechanical performance, as well as low production costs. Following the same tendencies in construction development, the ceramic industry has intensified the production of porcelain ceramic tiles and floors. These are achieved by a fine finishing and receive polishing at the end of the fabrication process. This work researched the use of porcelain residues in polishing for the production of concrete. All of which; due to economical and environmental issues. This process aims to prove adequate destiny for this type of residue, due to environmental issues, incorporating it to the concrete itself; all of which provides economy in consumption of the materials that constitute concrete. Thus, the main characteristics of concrete were investigated through the inclusion of different concentration of the porcelain residue as additional trait element. The residue rates incorporated to the trait varied from 10% to 50% in relation to the cement mass, in the traits with plastic additives and without plastic additives. It is observed that the inclusion of porcelain residue produced a meaningful alteration in the consistency of fresh concrete. This residue has a fine granulometry and it considerably absorbed the water used in the concrete spreading, influencing the way this material is dealt with. Thus, the value of cement striking decreases with the increase of residues present in trait. The maximal incorporation of the residue was of 50%, massively, for the same factor water/initial cement. The use of residues in concrete results in an 40% increase in the compression resistance. It is also proportional to residue concentration of porcelain in the trait. The microstructure was also favored once porosity and concrete absorption decreases with the use of this residue. The parameters demonstrate the quality and durability of the concrete produced with this residue. The use of porcelain residue in concrete composition has not produced meaningful thermal behavior changes. Thermal conductivity, heat capacity and thermal diffusivity have been maintained basically constant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pastas a base de cimento Portland são utilizadas na cimentação de poços de petróleo. Elas consistem de uma mistura de partículas sólidas de cimento dispersas em água e aditivos. Atualmente, diversos materiais alternativos são utilizados como aditivos, objetivando a modificação e a melhoria das propriedades das pastas de cimento, especialmente no aumento da fluidez. Novos aditivos plastificantes são capazes de suportar as diversas condições de poços, promovendo propriedades no estado fluido compatíveis às condições exigidas para cimentação.Dispersantes são os componentes da pasta que garantem fluidez, além de proporcionar controle na água perdida por filtração na formação porosa, garantindo o sucesso da operação de bombeio. Em deter minados campos, além do efeito da profundidade, as condições geológicas das formações promovemvariações do gradiente de pressão e temperatura ao longo da profundidade vertical do poço. Recentemente, diversos aditivos químicos da indústria da construção civil tem sido estudados em condições de cimentação de poços de petróleo. Vários produtos testados tem apresentado desempenho superior aos produtos normalmente empregados pela indústria de petróleo com boa relação custo/benefício em função do volume de mercado da construção civil. Resultados promissores na seleção de aditivos com função dispersante da construção civil para operações de cimentação de poços de petróleo onshore foram obtidos para temperaturas até 80°C. O potencial de uso desses aditivos permite estabelecer novas soluções para problemas encontrados na cimentação de poços de petróleo HPHT, poços sujeitos à injeção de vapor, poços depletados e poços produtores de gás. Na construção civil, os superplastificantes permitem reduzir o fator água/cimento das argamassas proporcionando melhoria de propriedades como resistência mecânica e fluidez. Assim, o objetivo deste trabalho foi o estudo e a caracterização reológica de pastas constituídas de cimento Portland, água e aditivos do tipo plastificante, com função dispersante a base de naftaleno condensado e policarboxilato, na faixa de temperaturas de 58°C e 70ºC. As condições utilizadas para a avaliação dos aditivos alternativos foram baseadas em uma cimentação primária para um poço hipotético de 2200 m de profundidade e gradientes geotérmicos de 1,7°F/100 pés e 2,1°F/100 pés. Os resultados demonstraram a grande eficiência e o poder dispersivo do policarboxilato para as temperaturas estudadas. O aditivo promoveu alta fluidez, sem efeitos de sedimentação da pasta. O dispersante à base de naftaleno reduziutant o a viscosidade plástica como o limite de escoamento acimada concentração a partir de 0,13%. O modelo de Bingham descreveu bem o comportamento reológico das pastas com policarboxilato para todas as concentrações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population growth experienced in major cities, allied to society s need of infra-structure, especially ones related to habitational demands, increases the consumption of construction materials. As a consequence, consumption of natural resources itself. Thus, due to this process, concrete is one of the most produced materials in civil construction. This is also due to the great diversity of its application, easiness in its execution and adequate mechanical performance, as well as low production costs. Following the same tendencies in construction development, the ceramic industry has intensified the production of porcelain ceramic tiles and floors. These are achieved by a fine finishing and receive polishing at the end of the fabrication process. This work researched the use of porcelain residues in polishing for the production of concrete. All of which; due to economical and environmental issues. This process aims to prove adequate destiny for this type of residue, due to environmental issues, incorporating it to the concrete itself; all of which provides economy in consumption of the materials that constitute concrete. Thus, the main characteristics of concrete were investigated through the inclusion of different concentration of the porcelain residue as additional trait element. The residue rates incorporated to the trait varied from 10% to 50% in relation to the cement mass, in the traits with plastic additives and without plastic additives. It is observed that the inclusion of porcelain residue produced a meaningful alteration in the consistency of fresh concrete. This residue has a fine granulometry and it considerably absorbed the water used in the concrete spreading, influencing the way this material is dealt with. Thus, the value of cement striking decreases with the increase of residues present in trait. The maximal incorporation of the residue was of 50%, massively, for the same factor water/initial cement. The use of residues in concrete results in an 40% increase in the compression resistance. It is also proportional to residue concentration of porcelain in the trait. The microstructure was also favored once porosity and concrete absorption decreases with the use of this residue. The parameters demonstrate the quality and durability of the concrete produced with this residue. The use of porcelain residue in concrete composition has not produced meaningful thermal behavior changes. Thermal conductivity, heat capacity and thermal diffusivity have been maintained basically constant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pastas a base de cimento Portland são utilizadas na cimentação de poços de petróleo. Elas consistem de uma mistura de partículas sólidas de cimento dispersas em água e aditivos. Atualmente, diversos materiais alternativos são utilizados como aditivos, objetivando a modificação e a melhoria das propriedades das pastas de cimento, especialmente no aumento da fluidez. Novos aditivos plastificantes são capazes de suportar as diversas condições de poços, promovendo propriedades no estado fluido compatíveis às condições exigidas para cimentação.Dispersantes são os componentes da pasta que garantem fluidez, além de proporcionar controle na água perdida por filtração na formação porosa, garantindo o sucesso da operação de bombeio. Em deter minados campos, além do efeito da profundidade, as condições geológicas das formações promovemvariações do gradiente de pressão e temperatura ao longo da profundidade vertical do poço. Recentemente, diversos aditivos químicos da indústria da construção civil tem sido estudados em condições de cimentação de poços de petróleo. Vários produtos testados tem apresentado desempenho superior aos produtos normalmente empregados pela indústria de petróleo com boa relação custo/benefício em função do volume de mercado da construção civil. Resultados promissores na seleção de aditivos com função dispersante da construção civil para operações de cimentação de poços de petróleo onshore foram obtidos para temperaturas até 80°C. O potencial de uso desses aditivos permite estabelecer novas soluções para problemas encontrados na cimentação de poços de petróleo HPHT, poços sujeitos à injeção de vapor, poços depletados e poços produtores de gás. Na construção civil, os superplastificantes permitem reduzir o fator água/cimento das argamassas proporcionando melhoria de propriedades como resistência mecânica e fluidez. Assim, o objetivo deste trabalho foi o estudo e a caracterização reológica de pastas constituídas de cimento Portland, água e aditivos do tipo plastificante, com função dispersante a base de naftaleno condensado e policarboxilato, na faixa de temperaturas de 58°C e 70ºC. As condições utilizadas para a avaliação dos aditivos alternativos foram baseadas em uma cimentação primária para um poço hipotético de 2200 m de profundidade e gradientes geotérmicos de 1,7°F/100 pés e 2,1°F/100 pés. Os resultados demonstraram a grande eficiência e o poder dispersivo do policarboxilato para as temperaturas estudadas. O aditivo promoveu alta fluidez, sem efeitos de sedimentação da pasta. O dispersante à base de naftaleno reduziutant o a viscosidade plástica como o limite de escoamento acimada concentração a partir de 0,13%. O modelo de Bingham descreveu bem o comportamento reológico das pastas com policarboxilato para todas as concentrações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days