2 resultados para plasma simulation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The processing of materials through plasma has been growing enough in the last times in several technological applications, more specifically in surfaces treatment. That growth is due, mainly, to the great applicability of plasmas as energy source, where it assumes behavior thermal, chemical and/or physical. On the other hand, the multiplicity of simultaneous physical effects (thermal, chemical and physical interactions) present in plasmas increases the complexity for understanding their interaction with solids. In that sense, as an initial step for the development of that subject, the present work treats of the computational simulation of the heating and cooling processes of steel and copper samples immersed in a plasma atmosphere, by considering two experimental geometric configurations: hollow and plane cathode. In order to reach such goal, three computational models were developed in Fortran 90 language: an one-dimensional transient model (1D, t), a two-dimensional transient model (2D, t) and a two-dimensional transient model (2D, t) which take into account the presence of a sample holder in the experimental assembly. The models were developed based on the finite volume method and, for the two-dimensional configurations, the effect of hollow cathode on the sample was considered as a lateral external heat source. The main results obtained with the three computational models, as temperature distribution and thermal gradients in the samples and in the holder, were compared with those developed by the Laboratory of Plasma, LabPlasma/UFRN, and with experiments available in the literature. The behavior showed indicates the validity of the developed codes and illustrate the need of the use of such computational tool in that process type, due to the great easiness of obtaining thermal information of interest

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, changes in the surface properties of materials have been used to improve their tribological characteristics. However, this improvement depends on the process, treatment time and, primarily, the thickness of this surface film layer. Physical vapor deposition (PVD) of titanium nitrate (TiN) has been used to increase the surface hardness of metallic materials. Thus, the aim of the present study was to propose a numerical-experimental method to assess the film thickness (l) of TiN deposited by PVD. To reach this objective, experimental results of hardness (H) assays were combined with a numerical simulation to study the behavior of this property as a function of maximum penetration depth of the indenter (hmax) into the film/substrate conjugate. Two methodologies were adopted to determine film thickness. The first consists of the numerical results of the H x hmax curve with the experimental curve obtained by the instrumental indentation test. This methodology was used successfully in a TiN-coated titanium (Ti) conjugate. A second strategy combined the numerical results of the Hv x hmax curve with Vickers experimental hardness data (Hv). This methodology was applied to a TiN-coated M2 tool steel conjugate. The mechanical properties of the materials studied were also determined in the present study. The thicknesses results obtained for the two conjugates were compatible with their experimental data.