7 resultados para plant extracts

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the new drugs launched into the market since 1980, up to 30% of them belong to the class of natural products or they have semisynthetic origin. Between 40-70% of the new chemical entities (or lead compounds) possess poor water solubility, which may impair their commercial use. An alternative for administration of poorly water-soluble drugs is their vehiculation into drug delivery systems like micelles, microemulsions, nanoparticles, liposomes, and cyclodextrin systems. In this work, microemulsion-based drug delivery systems were obtained using pharmaceutically acceptable components: a mixture Tween 80 and Span 20 in ratio 3:1 as surfactant, isopropyl mirystate or oleic acid as oil, bidistilled water, and ethanol, in some formulations, as cosurfactants. Self-Microemulsifying Drug Delivery Systems (SMEDDS) were also obtained using propylene glycol or sorbitol as cosurfactant. All formulations were characterized for rheological behavior, droplet size and electrical conductivity. The bioactive natural product trans-dehydrocrotonin, as well some extracts and fractions from Croton cajucara Benth (Euphorbiaceae), Anacardium occidentale L. (Anacardiaceae) e Phyllanthus amarus Schum. & Thonn. (Euphorbiaceae) specimens, were satisfactorily solubilized into microemulsions formulations. Meanwhile, two other natural products from Croton cajucara, trans-crotonin and acetyl aleuritolic acid, showed poor solubility in these formulations. The evaluation of the antioxidant capacity, by DPPH method, of plant extracts loaded into microemulsions evidenced the antioxidant activity of Phyllanthus amarus and Anacardium occidentale extracts. For Phyllanthus amarus extract, the use of microemulsions duplicated its antioxidant efficiency. A hydroalcoholic extract from Croton cajucara incorporated into a SMEDDS formulation showed bacteriostatic activity against colonies of Bacillus cereus and Escherichia coli bacteria. Additionally, Molecular Dynamics simulations were performed using micellar systems, for drug delivery systems, containing sugar-based surfactants, N-dodecylamino-1-deoxylactitol and N-dodecyl-D-lactosylamine. The computational simulations indicated that micellization process for N-dodecylamino-1- deoxylactitol is more favorable than N-dodecyl-D-lactosylamine system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increase in the incidence of fungal infections due to the drug-resistance or to the number of patients with immune alterations such as AIDS, chemotherapy or organ transplantation, has done the research necesseray for new antifungal drugs. The species from Northeastern Brazil may become an important source of innovative natural molecules. To evaluate the antifungal activity of 10 medicinal plants from Northeastern Brazil, traditionally used as antimicrobial agents, 30 crude extracts (CE) were tested in vitro against four standard species of Candida spp. The CE most promising of these plants were evaluated against yeasts of the oral cavity of kidney transplant patients and through a bioassay-guided fractionation. The extracts form leaves of E. uniflora, the stem bark of L. ferrea and leaves of P. guajava showed significant activity against all yeasts evaluated, with MIC values between 15.62 and 62.5 μg/mL. E. uniflora also showed fungicidal properties against all yeasts, especially against Candida dubliniensis. In patients with immune systems compromised, such as transplanted, oral candidiasis manifests mainly due to immunosuppressive therapy, and resistance to conventional antifungals. The CE of E. uniflora presented range of MIC values between 1.95 to 1000 μg/mL, and lower MIC50 and MIC90 values were observed against C. non-albicans. Due the better results, the CE of E. uniflora was elected to performe the bioassay-guided fractionation. Thus it was possible to obtain enriched fractions, which showed good inhibitory ability against ATCC strains of Candida spp. It was also possible to perform experiments to verify the production of biofilm in two strains of C. dubliniensis and action of extracts and fractions on the same. With this, we observed a behavior between the yeast ATCC and clinical isolate. In addition, CE, fractions and subfractions of E. uniflora inhibit planktonic cells to preventing the growth of biofilm. The preliminary chemical characterization of the fractions obtained revealed the presence of polyphenols (especially flavonoids and tannins). Finally, the results suggests that among the plant species studied, E. uniflora showed a pattern very promising as regards the antifungal, requiring further study of purification and structural elucidation of compounds in order to verify that the antifungal effect found can be attributed to a specific compound or some mechanism depends on synergistic the mixture of polyphenols

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dengue fever, currently the most important arbovirus, is transmitted by the bite of the Aedes aegypti mosquito. Given the absence of a prophylactic vaccine, the disease can only be controlled by combating the vector insect. However, increasing reports of resistance and environmental damage caused by insecticides have led to the urgent search for new safer alternatives. Twenty - um plant s eed extracts from the Caatinga were prepared , tested and characterized . Sodium phosphate ( 50 mM pH 8.0) was used as extractor. All extracts showed larvicidal and ovipositional deterrence activity . Extracts of D. grandiflora, E. contortisiliquum, A. cearenses , C. ferrea and C. retusa were able to attract females for posture when in low co ncentration . In the attractive concentrations, the CE of E. contortisiliquum and A. cearenses were able to kill 52% and 100% of the larvae respectively . The extracts of A. cearenses , P. viridiflora, E. velutina, M. urundeuva and S. brasiliensis were also pupicides, while extracts of P. viridiflora, E. velutina, E. contortisiliquum , A. cearenses, A. colubrina, D. grandiflora , B. cheilantha , S. spectabilis, C. pyramidalis, M. regnelli e G. americana displayed adulticidal activity. All extracts were toxic to C. dubia zooplankton . The EB of E. velutina and E. contortisiliquum did not affect the viability of fibroblasts . In all extracts were identified at least two potential insecticidal proteins such as enzyme inhibitors, lectins and chitin - binding proteins and components of secondary metabolism . Considering all bioassays , the extracts from A. cearenses, P. viridiflora, E. contortisiliquum , S. brasiliensis, E. velutina and M. urundeuva were considered the most promising . The E. contortisiliquum extracts was the only one who did not show pupicida activity, indicating that its mechanism of action larvicide and adulticidal is related only to the ingesti on of toxic compounds by insect , so it was selected to be fragmenting. As observed for the CE , th e protein fractions of E. contortisiliquum also showed larvicidal activity, highlighting that F2 showed higher larvicidal activity and lower en vironmental toxicity than the CE source. The reduction in the proteolytic activity of larvae fed with crude extra ct and fractions of E. contortisiliquum suggest ed that the trypsin inhibitors ( ITEc) would be resp onsible for larvicidal activity . However the increase in the purification of this inhibitor resulted in loss of larvicidal activity , but the absence of trypsin inhibitor reduced the effectiveness of the fractions , indicating that the ITEC contributes to the larvicidal activity of this extract. Not been observed larvicidal activity and adulticide in rich fraction vicilin, nor evidence of the contribution o f this molecule for the larvicidal activity of the extract. The results show the potential of seeds from plant extracts of Caatinga as a source of active molecules against insects A. aegypti at different stages of its development cycle, since they are comp osed of different active compounds, including protein nature, which act on different mechanisms should result in the death of insec

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Envenomation caused by venomous animals, mainly scorpions and snakes, are a serious matter of public health. Tityus serrulatus is considered the most venomous scorpion in South America because of the high level of toxicity of its venom. It is responsible for causing serious accidents, mainly with kids. The species Bothrops jararaca is a serpent that has in its venom a complex mixture of enzyme, peptides and other molecules. The toxins of the venom of B. jararaca induce local and systemic inflammatory responses. The treatment chosen to serious cases of envenomation is the intravenous administration of the specific antivenom. However, the treatment is not always accessible to those residents in rural areas, so that they use medicinal plant extracts as the treatment. In this context, aqueous extracts, fractions and isolated compounds of Aspidosperma pyrifolium (pereiro) and Ipomoea asarifolia (salsa, salsa-brava), used in popular medicine, were studied in this research to evaluate the anti-inflammatory activity in the peritonitis models induced by carrageenan and peritonitis induced by the venom of the T. serrulatus (VTs), and in the local oedema model and inflammatory infiltrate induced by the venom of the B. jararaca, administrated intravenously. The results of the assays of cytotoxicity, using the MTT, showed that the aqueous extracts from the plant species presented low toxicity to the cells that came from the fibroblast of the mouse embryo (3T3).The chemical analysis of the extracts by High Performance Liquid Chromatography revealed the presence of the rutin flavonoid, in A. pyrifoliu, and rutin, clorogenic acid and caffeic acid, in I. asarifolia. Concerning the pharmacological evaluation, the results showed that the pre-treatment using aqueous extracts and fractions reduced the total leukocyte migration to the abdominal cavity in the peritonitis model caused by the carrageenan and in the peritonitis model induced by the T. serulatus venom. Yet, these groups presented anti-oedematous activity, in the local oedema model caused by the venom of the B. jararaca, and reduced the inflammatory infiltrate to the muscle. The serum (anti-arachnid and anti-bothropic) specific to each venom acted inhibiting the inflammatory action of the venoms and were used as control. The compounds identified in the extracts were also tested and, similar to the plant extracts, showed meaningful anti-inflammatory effects, in the tested doses. Thus, these results are indicating the potential anti-inflammatory activity of the plants studied. This is the first research that evaluated the possible biological effects of the A. pyrifolium and I. asarifolia, showing the biological potential that these species have.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accidents caused by venomous animals represents a significant and serious public health problem in certain regions of Brazil, as well as in other parts of the world by the frequency with which they occur and the mortality they cause. The use of plant extracts as an antidote for poisoning cases is an ancient practice used in many communities that have no access to antivenom. Medicinal plants represent an important source of obtaining bioactive compounds able to assist directly in the treatment of poisoning or indirectly supplementing serum therapy currently used. The aim of this study was to evaluate the effect of extracts, fractions and isolated compounds from M. tenuiflora and H. speciosa in the inflammatory process induced by carrageenan and the venom of B. jararaca and T. serrulatus. The results showed that both M. tenuiflora and H. speciosa were capable of inhibiting cell migration and cytokines levels in peritonitis induced by carrageenin and venom of T. serrulatus. In poisoning by B. jararaca model, mice treated with the plants in studies decreased the leukocyte influx into the peritoneal cavity. Finally the M. tenuiflora and H. speciosa had antiphlogistic activity, reducing edema formation and exerted inhibitory action of leukocyte migration in local inflammation induced by the venom of B. jararaca. Through of Thin Layer Chromatography (TLC) analysis was possible identified the presence of flavonoids ,saponins and/or terpenes in aqueous extract of M. tenuiflora. By High Performance Liquid Chromatography analysis, it was possible to identify the presence of rutin and chlorogenic acid in aqueous extract of H. speciosa. We conclude that the administration of extracts, fractions and isolated compounds of H. speciosa and M. tenuiflora resulted in inhibition of the inflammatory process in different experimental models. This study demonstrates for the first time the effect of M. tenuiflora and H. speciosa in inhibition of the inflammation caused by B. jararaca and T. serrulatus venom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA