2 resultados para physiological adaptation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The marine tucuxi, Sotalia guianensis, is one of the smallest known cetaceans, has coastal habits, and occurs from Hondures to Santa Catarina, in southern Brazil. The objective of this dissertation was to describe diving behavior of the marine tucuxi in three age classes and to analyze the cardiac capacity to dive through the examination of hearts of stranded specimens. Observations were made from October 2004 to November 2005 from a vantage point, in Curral Bay at Pipa beach-RN. We used Ad Libitum sampling and All occurrences to record the behaviors. The diving was characterized by the total exposition of the tail fluke for a few seconds, in 90° or 45° angles. Were recorded 131 dives in three behavioral contexts: foraging, traveling and socialization. The difference between juveniles and adults in dive time and fluke out at 45° or 90° to search and/or capture prey is probably influenced by the strategy used and ability to capture the prey. The frequency of fluke out at 90° for foraging in adults may be related to increased physiological efficiency of adults in comparison to juveniles. However, in the context of travel and socialization the dive time and fluke out were independent between the age classes. Dive in calves were frequent during socialization (play behavior) and traveling. This, associated with synchronic calve-adult diving suggests that a relationship of these behaviors and the acquisition of experience and foraging skills. As observed in other cetaceans, the heart (n=12) of the estuarine dolphin is broad and presents long ventricles which form a round apex. The right ventricle is long and narrow. The degree of dilatation of the aortic bulb may support the heart during diastole. The characteristic morphology of the heart and short dive duration < 2 min and depth ranged from 10m in the estuarine dolphin, can be likely at physiological adaptation for diving, typical de dolphins with coastal habits. The limitation of diving time in this specie may be influenced by anatomical and physiological restrictions
Resumo:
Vitamin A is an essential nutrient for many physiological processes such as growth and development, so that their adequate nutritional state is essential during pregnancy and lactation. Lactating women and children in breastfeeding are considered risk groups for vitamin A deficiency and some factors may increase the risk of vitamin A deficiency, such as prematurity. The aim of this work was to evaluate the vitamin A concentration in preterm and term lactating women and newborns by determination of retinol in maternal serum, umbilical cord serum and breast milk collected until 72 hours postpartum. 182 mothers were recruited and divided into preterm group (GPT; n = 118) and term group (GT, n = 64). In preterm group were also analyzed transition milk (7th-15th day; n = 68) and mature milk (30th-55th day; n = 46) samples. Retinol was analyzed by high-performance liquid chromatography (HPLC). Maternal retinol concentration in serum was 48.6 ± 12.3 µg/dL in GPT and 42.8 ± 16.3 µg/dL in the GT (p <0.01). Cord serum retinol was 20.4 ± 7.4 µg/dL in GPT and 23.2 ± 7.6 µg/dL in GT (p> 0.05). Among newborns, 43% of premature and 36% of term had low levels of serum retinol in umbilical cord (<20 µg/dL). In colostrum, the retinol in preterm and term groups had an average of 100.8 ± 49.0 µg/dL and 127.5 ± 65.1 µg/dL, respectively (p <0.05). The retinol average in preterm milk increased to 112.5 ± 49.7 µg/dL in transition phase and decreased to 57.2 ± 23.4 µg/dL in mature milk, differing significantly in all stages (p <0.05). When comparing with the recommendation of vitamin A intake (400 µg/day) GT colostrum reached the recommendation for infants, but in GPT the recommendation was not achieved at any stage. Mothers of premature infants had higher serum retinol than mothers at term; however, this was not reflected in serum retinol of umbilical cord, since premature had lower concentration of retinol. Such condition can be explained due to lower maternal physiological hemodilution and placental transfer of retinol to the fetus during preterm gestation. Comparison of retinol in colostrum showed lower concentrations in GPT; however the transition phase there was a significant increase of retinol content released by the mammary gland of preterm mothers. This situation highlights a specific physiological adaptation of prematurity, likely to more contribute to formation of hepatic reserves of retinol in premature infants.