2 resultados para optimal hedge ratio

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop