2 resultados para optical fiber communication
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The main purpose of this dissertation, consists of the study and analysis of the PBG (Photonic Band Gap )..tecnology incorporated in optical fiber structures. So, we'l1 present a complete PBG structure theory, and folowing this, we'l1 present also a chapter for convencional optical fiber, due to the need to construct the base theory of them, and latter a more complete work about photonic crystal fiber. Finaly, we'l1 show the results of the signals , dispersion, and obtained curves under the right dimensions according to the required signals, for convencional optical and photonic crystal fiber. Knowing that PBG crystals with low losses act as perfect mirrors for forbidden frequences and knowing that the persence of structures of PBG as substrates, brings some desirable characteristics such as spontaneous emition supression and superficial waves. We' 11 show according to these characteristics its applications in telecomunication. Therefore, the enphasis of this work is to show that the optical fibers are the only practible thing to integrate the enormous quantity of data and video at intemet' s market, developing, manipulating, changing, and multiplexing the optical fibers chanels in an area where we expect that the photonic crystals has an important hole, since the photonic crystals can be projected and made to avoid losses in the bands of certain wavelength which permits the increase in efficiency ofthe optical components projected with crystals. A sequence of this work would be the utilisation of the PBG structures in the new system of optical network without fiber developed by Bell laboratories of the lucent tecnology, last year using light rays for transmiting information through the air. The new system of optical networks without fiber will permit sending the data of 15 cd-rooms in less then one second, what represents 65 times more information than those transmitted through the actual radio frequences