3 resultados para operating characteristics

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The SPPB provides information about physical function and is a predictor of adverse events in the elderly. Frailty is a multidimensional syndrome that increases susceptibility to diseases and disability. However it may be possible to prevent or postpone frailty if is identified early. Our objective is to analyze SPPB s ability in screening for frailty a community-dwelling young elderly from cities with distinct socioeconomic conditions. Methods: Data were originated from community dwelling adults (65-74 years old) in Canada (Saint Bruno; n = 60) and Brazil (Santa Cruz; n = 64). SPPB was used to assess physical performance. Frailty was defined as the presence of ≥ 3 of these criteria: weight loss, exhaustion, weakness, mobility limitation and low physical activity. One point was given for each criterion met, totalizing a frailty score ranged from 0 to 5. The Linear Regression and Receiver Operating Characteristics analyses were performed to evaluate the SPPB s screening ability. Results: Mean age was 69.48, 10.0% of the Saint Bruno s sample and 28.1% of Santa Cruz s were frail (p = 0.001), the SPPB score means were 9.6 and 8.5 respectively (p = 0.01). SPPB correlated with the frailty score (R2 = 0.33), with better results for Saint Bruno. A cutoff of 9 in SPPB had good sensitivity and specificity in discriminating frail from non frail in Saint Bruno (AUC = 0.81) but showed fair results in Santa Cruz (AUC = 0.61). Conclusion: The SPPB has moderate ability in predicting frailty among older adult s population, and is an useful test to identify people with good functionality and low frailty when SPPB scores are ≥9

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.