6 resultados para night vision system

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BRITTO, Ricardo S.; MEDEIROS, Adelardo A. D.; ALSINA, Pablo J. Uma arquitetura distribuída de hardware e software para controle de um robô móvel autônomo. In: SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE,8., 2007, Florianópolis. Anais... Florianópolis: SBAI, 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present a hardware-software architecture for controlling the autonomous mobile robot Kapeck. The hardware of the robot is composed of a set of sensors and actuators organized in a CAN bus. Two embedded computers and eigth microcontroller based boards are used in the system. One of the computers hosts the vision system, due to the significant processing needs of this kind of system. The other computer is used to coordinate and access the CAN bus and to accomplish the other activities of the robot. The microcontroller-based boards are used with the sensors and actuators. The robot has this distributed configuration in order to exhibit a good real-time behavior, where the response time and the temporal predictability of the system is important. We adopted the hybrid deliberative-reactive paradigm in the proposed architecture to conciliate the reactive behavior of the sensors-actuators net and the deliberative activities required to accomplish more complex tasks

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work introduces a new method for environment mapping with three-dimensional information from visual information for robotic accurate navigation. Many approaches of 3D mapping using occupancy grid typically requires high computacional effort to both build and store the map. We introduce an 2.5-D occupancy-elevation grid mapping, which is a discrete mapping approach, where each cell stores the occupancy probability, the height of the terrain at current place in the environment and the variance of this height. This 2.5-dimensional representation allows that a mobile robot to know whether a place in the environment is occupied by an obstacle and the height of this obstacle, thus, it can decide if is possible to traverse the obstacle. Sensorial informations necessary to construct the map is provided by a stereo vision system, which has been modeled with a robust probabilistic approach, considering the noise present in the stereo processing. The resulting maps favors the execution of tasks like decision making in the autonomous navigation, exploration, localization and path planning. Experiments carried out with a real mobile robots demonstrates that this proposed approach yields useful maps for robot autonomous navigation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BRITTO, Ricardo S.; MEDEIROS, Adelardo A. D.; ALSINA, Pablo J. Uma arquitetura distribuída de hardware e software para controle de um robô móvel autônomo. In: SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE,8., 2007, Florianópolis. Anais... Florianópolis: SBAI, 2007.