4 resultados para mscs

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study searches to supply an existing gap in the empirical research about the performance of controllers of Micron and Small Companies (MSCs) in the context of corporative education (EC) through the Method of Support of Decision in Corporative Education (MSDCE). In the context of MCSs, this is a pioneering work, for other works related to this thematic searched in literature are limited to conjecture the possibility of its implantation via cooperation between companies; moreover, they do not apply any type of diagnosis method or viability. The object of study is an association of supermarkets of the city of Natal/RN, composed by 16 stores, of what 14 had been searched. The main objective of this work was to apply the first stage of the MSDCE and to verify the possibility of implanting the Corporative Education in the searched MSCs. As a result, it was obtained the profile of the companies and the validation of the above-mentioned Method. The phase of diagnosis conceived through the implantation of the first stage occurred through visits to the stores, interviews, application of questionnaires and place observation. The first stage - strategical analysis for professional education - was divided in two phases: analysis of the current corporative situation and available identification of the involved difficulties and resources. The implantation of the first stage of the MSDCE in the Association of Supermarkets Parceiros da Economia demanded a mapping of abilities and demonstrated how the education management works, the main difficulties and limitations of the MCSs of the supermerket branch of Natal/RN. Beyond the technological aspects, it was verified that cultural and educational aspects need to be worked to reach efficiency in the process of implantation of a corporative education program

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. Several applications of the study of EC can be emphasized the therapeutic techniques such as guided bone regeneration by implantation of EC in the affected site, without the need for bone grafts, using titanium as a vehicle. The process of cryopreservation is essential for the maintenance of cell cultures, since the cell line is frozen, it can be maintained in liquid nitrogen for an indefinite period and then thawed for therapeutic or experimental purposes. The aim of this study was to isolate a population of MSCs derived from the subendothelium of the umbilical vein human (MSCs-SUVH) to assess cytogenetic analysis by the possibility of appearance of chromosomal changes in two different situations: MSCs-SUVH regarding the process of cryopreservation and MSCs-SUVH grown on the surface of titanium. Flow cytometry analysis revealed that, this cell population was positive for the markers CD29, CD73 and CD90, but there was no expression of hematopoietic lineage markers, such as CD14, CD34 and CD45 and demonstrated capacity for osteogenic differentiation. The chromosomes obtained from the primary culture of MSCs-SUVH were analyzed by GTW banding technique, and results are described as guidelines to ISCN 2005. There was not the emergence of clonal chromosomal changes in the MSCs-SUVH in different situations analyzed. However one of the strings presented a balanced paracentric inversion, probably a cytogenetic constitutional alterations, which was present before and after the experimental situations that the MSCs-SUVH was submitted

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient