33 resultados para mortar

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although already to exist alternative technique and economically viable for destination of used tires, quantitative data on properties of constructive elements that use the rubber waste as aggregate still are restricted. In the present work, the waste proceeding from industry of retreading as material for manufacture of composite destined to the production of constructive elements was considered. Mechanical and thermal properties of mortar had been analyzed Portland cement with addition of waste without treatment, in the ratios of 10%, 20% and 30% in mass in relation to the mass of the cement, substituting the aggregate in the trace in mortar 1:5 mass cement and sand. The size of the used residue varied between 0,30mm and 4,8mm (passing in the bolter 4,8mm and being restrained in the one of 0,30mm), being it in the formats fibers and granular. The influences of the size and the percentage of residue added to the mortar (in substitution to the aggregate) in the thermal and mechanical properties had been considered. Assays of body-of-test in thestates had been become fullfilled cool (consistency index) and hardened (absorption of water for capillarity, strength the compression, traction and strength flexural). The work is centralized in the problem of the relation thermal performance /strength mechanics of used constructive systems in regions of low latitudes (Been of the Piauí), characterized for raised indices of solar radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work had to verify the influence of massará, while mortar component, in the process of formation of saltpeter in cementitious plaster walls of buildings. The massará is a ceramic material, texture areno usually found in large volumes argillaceous sediments in Teresina, Piaui State capital, which is associated with the Portland cement mortar form for fixing and finishing in construction. Saltpeter or flowering is a pathology that happens in gypsum wallboard, which invariably reaction between soluble salts present in materials, water and oxygen. This pathology, supposedly credited to massará caused its use to suffer significant reduction in the market of the buildings. Verify this situation with particular scientific rigor is part of the proposal of this work. Grading tests Were performed, consistency limits (LL, LP and IP), determination of potential hydrogen, capacity Exchange (CTC), electrical conductivity (EC), x-ray fluorescence (FRX) and x-ray diffraction (DRX). Massará analysed samples in number six, including sample plastering salitrado presented potential hydrogen medium 5.7 in water and 5.2 on KCl n and electrical conductivity (EC), equal to zero. These results pointed to the affirmative that massará is a material that does not provide salinity content that can be taken into consideration. It is therefore concluded that the material analyzed not competing, at least with respect to the presence of soluble salts, for the formation of saltpeter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current environmental concerns include the excessive consumption and inefficient use of non-renewable natural resources. The construction industry is considered one of the largest consumers of natural raw materials, significantly contributing to the environmental degradation of the planet. The use of calcareous quarry (RPPC) and porcelain tile polishing residues (RPP) as partial replacements of the cement in mortars is an interesting alternative to minimize the exploration of considerably large amounts of natural resources. The present study aimed at investigating the properties of fresh and hardened mortars produced using residues to replace cement. The residues used were fully characterized to determine their specific mass, unitary mass, particle size distribution and morphology, and composition. The performance of the mortars was compared to that of reference compositions, prepared without residues. A total of 18 compositions were prepared, 16 using residues and 2 reference ones. The mortars were prepared using Portland CP II F 32 cement, CH I hydrated lime, river sand and tap water. The compositions of the mortars were 1:1:6 and 1:0.5:4.5 (vol%), and water to cement ratios of 1.87 and 1.45 were used, respectively. The mortars in the fresh state were evaluated by consistency index, water retention, density of mass and incorporated air content tests. In their hardened state, the mortars were evaluated by apparent mass density, modulus of elasticity, flexural tensile strength, compressive strength and water absorption by capillarity. The mortars were also analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and fluorescence. Finally, they were classified according to NBR 13281 standards. The mortars prepared using residues partially replacing the cement exhibited lower modulus of elasticity compared to the reference compositions, thus improving the performance in their intended use. On the downside, the water absorption by capillarity was affected by the presence of residues and both the tensile and compressive strength were reduced. However, from the overall standpoint, the replacement of cement by calcareous quarry or porcelain tile polishing residues did not result in significant changes in the properties of the mortars. Therefore, compositions containing these residues can be used in the construction industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of binders in the soil for the production of solid bricks is an old construction technique that has been used by several civilizations over time. At the same time, the need for environmental preservation and the tendency of scarcity of natural resources make the construction invest in researching new concepts, methods and materials for building systems for the sustainability of their economic activities. Thus arises the need to obtain building materials with low power consumption, capable of reducing the growing housing shortage of rural and urban population. Currently, research has been conducted on this topic to better understand the cementitious and pozzolanic reactions that occur in the formation of the microstructure of the soil-cement when added to other materials such as, for example, lime, and the relationship between microstructure and formed interfaces with the physical, mechanical and chemical analysis in compounds made from these ternary compositions. In this context, this study aimed to analyze the results of the influence of the incorporation of lime to the soil-cement to form a ternary mixture to produce soil-cement bricks and mortar without structural purposes. From the inclusion of contents of 6 %, 8 %, 10% and 12% lime to the soil, and soil-cement mixes in amounts of 2 %, 3 %, 4 % and 5 % were shaped-bodies of -cylindrical specimens to determine the optimum moisture content and maximum dry apparent specific weight. Then they were cured, and subjected to the tests of compressive strength, absorption and durability modified. Compositions obtained the best results in the tests performed on the bodies-of-proof cylindrical served as a parameter for molding of solid bricks, which underwent the same experimental methodology previously cited. The raw materials used, as well as compositions in which the bricks were molded solid, were characterized by physical and chemical tests, X-ray diffraction and scanning electron microscopy. The results obtained in the study indicate that the compositions studied, that showed the best results in terms of compressive strength, water absorption and durability ternary composition was soil, 10 % cement and 2 % lime

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of sewage sludge as a raw material falls within the waste recycling key in the current process model environmental sustainability .Waste recycling has been consolidated as a sustainable environmentally sound technical solution, and. Despite showing very variable composition and characteristics, sewage sludge, can be considered as a residue with a high recycling potential in the building sector. In this paper the feasibility of using sewage sludge ash was studied in addition to Portland cement mortar in 1:3 mass considered the standard dash. This gray additions were studied in proportions of 5%, 10 %, 15 %, 20 %, 25% and 30% by mass of cement. The methodology was focused on the characterization of materials by physical, chemical , mechanical , environmental and morphological followed by the production of mortar tests ,and finalized by the characterization tests of mortar in the fresh state, through the consistency index, content of entrained air, bulk density and water retention, and in the hardened state by bulk density, water absorption by capillarity capillarity coefficient, compressive strength, tensile strength in bending ,tensile bond strength and microstructural analysis for percentages of 0 to 20%. After comparing with the standard mortar mortars with addition of ash, it is concluded that the ash of sewage sludge did not impair the integrity and properties of mortars with addition, including increasing resistance to compression and tension, being 20% more indicated percentage. Thus, it becomes feasible the addition of sewage sludge ash in Portland cement mortar for the trait studied

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usually masonry structures has low tension strength, hence the design to flexural efforts can results in high reinforcement ratio, specification of high unit and prism strength, structural members with larger section dimensions and modification in structural arrangement to be possible to use masonry members. The main objective of this study is to evaluate the stiffness, the efforts distribution and the effect of horizontal elements (girders) and vertical elements (counterforts) distribution on the behavior of masonry blocks retaining walls. For this purpose, numerical modeling was performed on typical retaining wall arrangements by varying the amount and placement of horizontal and vertical elements, beyond includes elements simulating the reactions of the soil supporting the foundation of the wall. The numerical modeling also include the macro modeling strategy in which the units, mortar and grout are discretized by a standard volume that represents the masonry elastic behavior. Also, numerical model results were compared with those ones of simplified models usually adopted in bending design of masonry elements. The results show horizontal displacements, principal and shear stresses distribution, and bending moments diagrams. From the analysis it was concluded that quantity and manner of distribution of the girders are both important factors to the panel flexural behavior, the inclusion of the foundation changed significantly the behavior of the wall, especially the horizontal displacements, and has been proposed a new way of considering the flanges section of the counterforts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for cultural heritage preservation should be a constant, in order to minimize the lost of historical and cultural identity of a country. As part of this cultural heritage, highlights the importance of historical buildings. For the principles of restoration are met its important to know the state of conservation and the existing materials. Given the above, this work aims to study the pathological manifestations of the mortar coating from the Grupo Escolar Augusto Severo. For this, was conducted historical survey of the building, on-site visits with visual observation, collecting samples of mortar coating and characterization through visual and laboratory analysis, XRF, XRD, TG/DTG, OM and SEM-EDS. From the observations, pathological manifestations were found as: cracks, detachment of the coating, dirt, use of inappropriate material basis of cement, efflorescence, mold and mildew and also incompatible material base of cement. It was found that the pathological manifestations were intensified due to lack of coverage in some spots and especially the abandonment of the building, that many years does not have restoration or any other type of preventive and corrective maintenance. The results of laboratory tests indicated that the mortars studied are based on lime, with calcitic nature, and siliceous aggregate, with the presence of clay in two samples. From the samples collected, two are composed of lime, sand and clay and two by lime and sand. In this regard, it is important to conduct periodic inspections and maintenance, as well as carrying out restoration with use of material compatible with the original

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A housing unit was built to study the thermal performance, and of material using a composite made of gypsum and EPS ground. We used two techniques of construction, using blocks, and filling on the spot. Two compositions of the composite were studied. The blocks were fixed using conventional mortar. In the technical of filling on the spot were used PET bottles up inside the walls to provide mechanical and thermal resistance. Compression tests were realized according to the ABNT standard of sealing bricks. It is going to be shown an analysis of the thermal comfort through the use of thermocouples placed on the walls of the building, internally and externally. The manufacturing viability of houses, using recyclable materials, through the use of composite materials proposed will be demonstrated. The constructive aspects showing the advantages and disadvantages of the technique used also will be broached. The block used presents structural functions and thermal insulating, is low cost and represents an alternative to the use of EPS and PET bottles which are materials that end up occupying much space in the landfills, giving than an ecologically correct use. The results of thermal analysis shows the thermal comfort provided by the composite by the obtainment of a difference between the internal and external surfaces of the walls more exposed to the sun around 7º C. The average temperature of the air inside the building, around 28.0 º C was below the zone of thermal comfort recommended for countries with hot weather