5 resultados para morphological plasticity
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Caatinga is the predominant vegetation type in semi-arid region of Brazil, where many inhabitants depend on hunting and gathering for survival, obtaining resources for: food and feed, folk medicine, timber production, etc. It‟s the dry ecosystem with highest population density in the world. The early stages of development are the most critical during the life cycle of a flowering plant and they‟re primordial to its establishment in environments exposed to water stress. Information about adjustments to the growth of the species, correlated with their studies of distribution in Seridó oriental potiguar, are an important ecological and economic standpoint, because they provide subsidies for the development of cultivation techniques, to programs of sustainable use and recovery of degraded areas. This thesis aimed to study the initial growth and foliar morphology in plants like Enterolobium contortisiliquum (Vell.) Morong. (tamboril) and Erythrina velutina Mart. ex Benth (mulungu), species of occurrence in the Caatinga, under water stress. After sowing and emergency, the seedlings were exposed to three water regimes: 450 (control), 225 (moderate stress) and 112.5 (severe stress) mm of water slide for 40 days. Seeding occurred in bags of 5 kg and after the establishment of seedlings thinning was carried out leaving a plantlet per bag. At the beginning the waterings occurred daily with distilled water, passing to be on alternate days after thinning. Twenty and forty days after the thinning seedlings collections were held to be done analysis of growth and biomass partition. When compared to the control group, the treatments with water stress showed reduction in the growth of the aerial part, growth of the greater root, number of leaves and leaflets, dry leaf area and total phytomass in both species, but in general, this effect was most marked for E. velutina. Regarding the partition of biomass, there were few changes throughout the experiment. Morphological changes in the leaves as a function of stress were not significant, however, there was a trend, in both species, to produce narrower leaves, that facilitate heat loss to the environment. It has not been possible to establish a positive relationship between inhibition of growth and distribution of species, whereas E. velutina is a species of most common occurrence in Seridó oriental potiguar. In this way, other aspects should be taken into account when studying the adaptation of species the dry environments, such as salinity, presence of heavy metals, wind speed, etc
Resumo:
The locomotion is one of the most important capabilities developed by the animals, whose improvement is dependent on several neural centers, including the spinal cord. This activity promotes a lot of spinal modifications that enable it to adapt and improve their connections. This study aimed to observe the morphological changes occurring in the spinal cord after locomotor training in intact rats. For that we used male Wistar rats, which were submitted to locomotor training in wheel activity in protocols 1, 3 and 7 days (30min/day), and the results were compared to a control group not subjected to exercise. Coronal sections of 40 μm of the lumbosacral spinal cord were subjected to immunohistochemical techniques anti-Egr1, anti-NMDA and anti-SP, to characterize the spinal plasticity related to these substances. Egr1-immunoreactive cells were increased in all laminas, essentially in those more intensely activated by locomotion, laminas IV-X levels L4-S3. All observed sections expressed NMDA-immunoreactivity. Analysis of SP in the spinal dorsal horn resulted no significant variations of this neuropeptide related to locomotion. The results suggest that locomotor training provides synaptic plasticity similar to LTP in all laminas of the lumbosacral spinal cord, in different intensities. However, the SP appears do not participate of this process in the spinal dorsal horn. This work will contribute for consolidating and characterization of synaptic plasticity in the spinal cord
Resumo:
Th17 cells have been strongly associated to the pathogenesis of inflammatory and autoimmune diseases, although their influence on the carcinogenesis is still little known, there are reports of anti-tumor and protumoral actions. The objective of this study is to research the presence of Th17 lineage in lip and tongue SCC, using the analysis of the immunoexpression of IL-17 and RORγt, relating this immunoexpression with clinical and morphological findings in the attempt to better comprehend the role of these cells on the tumoral immunity of OSCCs. The results were submitted to non-parametric statistical tests with significance level of 5%. On the histomorphological analysis, it was observed the predominance of low level lesions on lip and high level lesions on tongue (p=0,024). It was not observed statistical significance between clinical stage and histological gradation of malignancy (p=0,644). For the immunohistochemical study, 5 random fields with greater immunoreactivity of the peritumoral inflammatory infiltrate were photomicrographed on the 400x magnification. It was done the count of lymphocytes which showed cytoplasmic and pericytoplasmic staining for the IL-17 cytokine as well as nuclear and cytoplasmic staining for RORγt. It was observed statistical significance difference on the quantity of immunopositive lymphocytes to IL-17 between the groups of SCC of lip and tongue (p=0,028). For the RORγt it was not observed statistical significance difference between the groups of SCC of lip and tongue (p=0,915). It was not observed statistical difference between the immunostaining of IL-17 and RORγt with histological gradation of malignancy and clinical staging. The findings of this research suggest a possible anti-tumor role of IL-17 for cases of lip. The results of the analysis of the RORγt are possibly due to the wide duality of the anti-tumor and protumoral role of the Th17 cells and their plasticity which, in the presence of different cytokines expressed on the tumor microenvironment, can alter its phenotype.
Resumo:
A number of evidences show the influence of the growth of injured nerve fibers in Peripheral Nervous System (PNS) as well as potential implant stem cells (SCs) to make it more suitable for nerve regeneration medium. In this perspective, this study aimed to evaluate the plasticity of mesenchymal stem cells from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants (D-10) and fibroblast growth factor-2 (FGF-2). In this perspective, the cells were cultivated only with DMEM (group 1), only with D-10(group 2), only with FGF-2(group 3) or with D-10 and FGF-2(group 4). The growth and morphology were assessed over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200 on the fourth day of cultivation. Cells cultured with conditioned medium alone or combined with FGF-2 showed distinct morphological features similar apparent at certain times with neurons and glial cells and a significant proliferative activity in groups 2 and 4 throughout the days. Cells cultived only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200. On average, area and perimeter fo the group of cells positive for GFAP and the área of the cells immunostained for OX-42 were higher than those of the group 4. This study enabled the plasticity of mesenchymal cells (MCs) in neuronal and glial nineage and opened prospects for the search with cell therapy and transdifferentiation
Resumo:
Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.